
Formally Proving Security Properties of

CHERI Architectures

Thomas Bauereiss Kyndylan Nienhuis Peter Sewell

16 June 2019

University of Cambridge firstname.lastname@cl.cam.ac.uk

1



ISA Specifications

Need for machine-checked proofs of security properties

2



�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

Sequential

Emulator (OCaml)

Sequential

Emulator (OCaml)

Isabelle

Lem

Definitions

ELF model
Lem

Sequential

Emulator (C)

asl_to_sail

ASL
ARMv8−A

Sail
ARMv8−A

SailSail Sail

OCaml,JS,CSS

UI
Coq HOL4

OCaml

Litmus frontend

Framemaker export

parse, analyse, patch

Sail

Power 2.06B
Framemaker

Power 2.06B
XML

Test

Generation

Sail

asl_to_sail

ASL
CHERI ARM

Sail
CHERI ARM

Sail

SMT

Sail

Sail

MIPSRISC−V x86 (core)

RMEM

concurrency

tool

Concurrency models

Lem

Power (core)

CHERI RISC−V CHERI−MIPS ARM (core)

ARMv8-A, RISC-V, POWER, x86ARMv8-A, RISC-V, POWER, x86

3



Proving Properties of ARMv8-A

Key question: Is the Sail model of this large specification usable

for formal verification?

Address translation: Most complex part of ARMv8 model!

• 9000 lines of specification required

• Page table walk: Over 500 LOS excluding helper functions

• . . . and there are lots of page table helper functions

• Involves iteration, variable-length bitvectors, memory effects,

nondeterminism, . . .

4



Proving Properties of ARMv8-A

We define a simplified, purely functional characterisation of address

translation suitable for reasoning about non-system code

About 500 lines of Isabelle total

Theorem
Simplified address translation is equivalent to full ARMv8 address

translation under certain assumptions:

user mode, no virtualisation, valid translation tables, hardware

updating of translation table flags

Uncovered a small bug in the ASL specification,

reported to ARM, fix in v8.5

5



Security Properties

Stating and verifying fundamental security properties of CHERI

architectures

• Characterisation of how individual instructions are allowed to

use and manipulate capabilities

• Upper bounds on capabilities that arbitrary code running in a

compartment can obtain from its initial capabilities

• Corollary: Isolation of a user space compartment under

specific conditions

6



Example: Intra-Instruction Property

...

let cs val = readCapReg(cs);

let ct val = readCapReg(ct);

...

if not(ct_val.permit_unseal) then

raise_c2_exception(...)

...

else

writeCapReg(cd,

{unsealCap(cs val) with

global=(cs val.global &

ct val.global)});

t = [E read reg(cs, c),

E read reg(ct, c ′),

E write reg(cd, c ′′)]

c ′′ ∈ derivable({c , c ′})

7



Monotonicity of Reachable Capabilities

Theorem
If a sequence of arbitrary instructions of a CHERI ISA is executed

in state s leading to state s ′, if

• no exception is raised,

• no capability invocation occurs, and

• address translation stays invariant,

then reachableCaps(s ′) ⊆ reachableCaps(s).

8



Proving the Properties

• Properties proved for CHERI-MIPS

• Initial results for CHERI-ARM research prototype:

Proved properties of selected instructions

• Scalability challenge: 64-bit v8.5 specification contains

• 66558 LOS for all 64-bit instructions

• 3825 Sail functions

• 561 registers

• 981 instructions (each may be multiple assembly mnemonics)

• ca. 800 calls to auxiliary functions per instruction on average

• Proof automation is crucial

9



Conclusion

Secure compartmentalisation

⇑

T-CHERI properties of instructions

⇑

Sail specifications of production ISAs

(complete with systems features)

and their CHERI extensions

10


