
Prove & Run 1

77, avenue Niel, 75017 Paris, France
contact@provenrun.com

Formal Proof of a Secure OS Full
Trusted Computing Base

Dominique Bolignano

Prove & Run 2

Context and
Objectives

Prove & Run 3

Context
• Context :

• Use of formal methods for security during a few
decades, in particular in the context of Trusted
Logic.

• First Common Criteria EAL7 certification achieved
for a smartcard OS, a Java Card environment and
hardware. Formal verification of a bytecode verifier
and its linking phase, etc. Deployed in billions.

• First TEE (secure OS). Also deployed in billions.
• ProvenCore project started in 2009.

• Development of a formally proven secure OS
(proved down to the code),

• Certifiable at the highest levels of security,

Prove & Run 4

StingRay MITM
attacks

Attacks on
Ukrainian

power stations
StuxNet

Jeep hack

D-Link charged
by FTC

Mirai

Prove & Run 5

Prove & Run’s answer to the challenge

• Two critical off-the-shelf software components:
• ProvenCore : microkernel proven and certified for security

(ARM Cortex A, Risc V, ARM Cortex M).

• ProvenVisor: secure hypervisor

Designed to have a TCB (Trusted Computing Base) that is
as close as possible to zero-bug.

Highest Level of Security ever reached
(CC EAL7 augmented) for Cortex A

World premiere

Prove & Run 6

Prove & Run Value Proposition

We provide cost effective off-the-shelf software
solutions that dramatically improve the level of
security of your Connected Systems/Devices so as
to protect them against remote cyber-attacks

Prove & Run 7

Security certification Schemes
• Many security certification schemes exist, and many

more are to come,
• The Common Criteria, which is an ISO standard is

based on seven levels from EAL1 to EAL7,
• Security schemes generally have a correctness part

and a robustness one.
• Correctness addresses the complete process (not only

development).
• EAL7 requires in its correctness part the use formal

methods down to the low level design.
• We have used formal methods down to the code.

Prove & Run 8

Need for security certification

• Exhaustive validation by trusted third party,
• You cannot usually check everything by yourselves,
• You cannot take what the developer tells you for granted,
• You need to compare the levels of security of different products,

• Along an extensive certification scheme, i.e.
The Common Criteria at its highest level :
• Important to not only cover the OS, but also its

maintenance, its initialization, its installation, its
provisionning, the associated organizational
policies, etc.

• Highest level needed because of the value at stake
and the connectivity, i.e. highly profitable business
models for hackers,

Prove & Run 9

This is about Trust!

• What would an organized attacker do with a given
budget (automotive, avionics, ..) :
• The objectives is to be able to resist to remote attacks that

can be performed with a budget typically over 10 M€. (1 to
100)
• Identification phase of the attack
• Exploitation phase of the attack,

• The general architecture should be well balanced.
• Some of us spent most of their time, analyzing and

improving security architectures in various areas (IoT,
cloud, chip security architecture and firmware, etc.)

• ProvenCore is the main tool we used to secure such
architectures.

Prove & Run 10

Our Strategy

• Maximize security level and more
importantly the level of trust that can be
achieved (for a given effort/budget),

• Use a very large base of use cases for
defining functional and security
requirements, and improving and
assessing their adequacy.

• Stepwise approach.

Prove & Run 11

Need for specific functionalities
• Access Control mechanisms between various

applications (i.e. processes, so called Trusted
Applications) themselves, between applications
and peripherals,
• So as to enforce constraints on the flow of

information to the applications themselves,
• Static and enforced by ProvenCore based on simple

access control matrix,
• Transferable tokens.

• High level APIs for applications,
• High level security services as applications (secure

storage, cryptographic libraries, etc.).

Prove & Run 12

Trusted Computing Base

Prove & Run 13

Refinement Proofs

• One (or a few) abstract models
• Formal properties expressed at

the highest level
• Properties should be as simple

as possible to understand (see
“ProvenCore: Towards a Verified
Isolation Micro-Kernel“, Stéphane
Lescuyer, 10th HiPEAC Conference,
2015

Abstract model

Concrete model

Properties

http://www.provenrun.com/wp-content/uploads/2015/01/Prove-Run-ProvenCore-Towards-a-Verified-Isolation-Micro-Kernel.pdf

Prove & Run 14

Refinement Proofs and Security Schemes

FSP

Source code

SPM

TDS

Security properties Security propertiesMain properties

Proven

Formally verified

Prove & Run 15

ProvenCore Case

FSP

Source code

SPM

TDS

Security properties

Prove & Run 16

Modelling a microkernel: Properties

FSP

Source code

SPM

TDS

Security properties P1 P3 Pn

SPM

P1 P2 Pn

SPM

Prove & Run 17

SMART development toolchain

P&R
Intermediate

Language: SMIL

Source Code
§ Compilable
§ C, Java, etc.

Development
environment

Automated

Certification
Documentation

Tests

§ CC
§ DO-178
§ etc.

Prover: Eclipse plugin

Generator (source code
and documentation):

Eclipse plugin

Prove & Run 18

SMART language specificities

• Built to meet the identified requirements of applying formal
methods at a large scale:
• Usable by developers at high abstraction level but also and more

importantly on the lowest levels
• Allow developers to find (and rely on) paradigms that they usually

use for either development, debugging or testing
• Force developers to answer the right questions while coding and

allow them to easily formalize those questions

• Language with a small and simple subset with the addition of
clearly identified syntactic sugaring

Prove & Run 19

Typical Use Case
for ProvenCore

Prove & Run 20

Filters / Applicative Firewalls

Proven and Certified Secure Isolation

EAL7

Prove & Run 21

Filters / Applicative Firewalls

Proven and Certified Secure Isolation

Prove & Run 22

Filters / Applicative Firewalls

Proven and Certified Secure Isolation

Prove & Run 23

Filters / Applicative Firewalls

Proven and Certified Secure Isolation

Formally Proven
Secure OS Kernel

(ProvenCore)

EAL7

Prove & Run 24

Filters / Applicative Firewalls

Proven and Certified Secure Isolation

Formally Proven
Secure OS Kernel

(ProvenCore)

Security
Policy

Enforcement

EAL7

Prove & Run 25

Hardware

Fil
te

r

TL
S /

 V
PN

TC
P/

IP

Et
he

rn
et

ProvenCore

TC
P/

IP

Et
he

rn
et

Server

……

Eth1Eth2

Gateway with secured Filtering
Formally Proven / Extremely high

security

High level of security or trust

Prove & Run 26

Hardware

Fil
te

r

TL
S /

 V
PN

TC
P/

IP

Et
he

rn
et

ProvenCore

TC
P/

IP

Et
he

rn
et

Server

……

Eth1Eth2

Gateway with secured Filtering
Formally Proven / Extremely high

security

High level of security or trust

Prove & Run 27

Hardware

Fil
te

r

TL
S /

 V
PN

TC
P/

IP

Et
he

rn
et

ProvenCore

TC
P/

IP

Et
he

rn
et

Server

……

Eth1Eth2

Gateway with secured Filtering
Formally Proven / Extremely high

security

High level of security or trust

Prove & Run 28

Hardware

Fil
te

r

ProvenCore

Pr
ot

oc
ol

St
ac

k

Eth1Eth2

Pr
ot

oc
ol

St
ac

k

Gateway with secured Filtering
Formally Proven / Extremely high

security

High level of security or trust

Server

Prove & Run 29

Hardware

Fil
te

r +
 V

PN

ProvenCore

Pr
ot

oc
ol

St
ac

k

Eth1Eth2

Pr
ot

oc
ol

St
ac

k

Gateway with secured Filtering

Server

Formally Proven / Extremely high
security

High level of security or trust

Prove & Run 30

Gateway with secured Filtering

Secure WorldNormal World

Gateway Hardware with Cortex A (and TrustZone)

Fil
te

r

TL
S /

 V
PN

TC
P/

IP

Et
he

rn
et

ProvenCore

TC
P/

IP
Et

he
rn

et

Server

…

Formally Proven / Extremely high
security

High level of security or trust

For details see “Security
Filters for IoT Domain
Isolation“,
By Dominique Bolignano,
Florence Plateau, ISoLa,
2018

https://www.provenrun.com/about/security-filters-for-iot-domain-isolation-isola/

Prove & Run 31

Smart Language

Prove & Run 32

SMART language specificities

• Functional (values manipulation) but with an imperative style
• Can be used at different abstraction levels
• Functions are partial
• Possible to associate proof obligations with logical paths in the

execution graph
• Proofs displayed as symbolic debugging
• Makes certification easier and brings trust

• Properties can be expressed as tests
• Invariants can also be expressed as programs or tests

• Possibility to use models/programs for proving

Prove & Run 33

SMART language specificities

• Functional (values manipulation) but with an imperative style
• Can be used at different abstraction levels
• Functions are partial
• Possible to associate proof obligations with logical paths in the

execution graph
• Proofs displayed as symbolic debugging
• Makes certification easier and brings trust

• Properties can be expressed as tests
• Invariants can also be expressed as programs or tests

• Possibility to use models/programs for proving

Prove & Run 34

Predicates

Prove & Run 35

Implicit predicates

public equals(elt x+, elt y)
implicit program

public removeFirst(elt x+, seq e, seq f+) -> [true, empty]
implicit program

public equals(elt x, elt y) -> [true, false]
implicit program

Prove & Run 36

Handling by case / control structure

Prove & Run 37

Handling by case / control structure

Prove & Run 38

Handling by case / control structure

Prove & Run 39

Data / Control separation

Prove & Run 40

Impossible cases / Associated local
properties

// program

// equivalent code:

Prove & Run 41

Impossible cases / Associated local
properties

// code chunks
// Property (1):

// equivalent code:

Prove & Run 42

SMART language specificities

• Functional (values manipulation) but with an imperative style
• Can be used at different abstraction levels
• Functions are partial
• Possible to associate proof obligations with logical paths in the

execution graph
• Proofs displayed as symbolic debugging
• Makes certification easier and brings trust

• Properties can be expressed as tests
• Invariants can also be expressed as programs or tests

• Possibility to use models/programs for proving

Prove & Run 43

SMART language specificities

• Functional (values manipulation) but with an imperative style
• Can be used at different abstraction levels
• Functions are partial
• Possible to associate proof obligations with logical paths in the

execution graph
• Proofs displayed as symbolic debugging
• Makes certification easier and brings trust

• Properties can be expressed as tests
• Invariants can also be expressed as programs or tests

• Possibility to use models/programs for proving

Prove & Run 44

SMART language specificities

• Functional (values manipulation) but with an imperative style
• Can be used at different abstraction levels
• Functions are partial
• Possible to associate proof obligations with logical paths in the

execution graph
• Proofs displayed as symbolic debugging
• Makes certification easier and brings trust

• Properties can be expressed as tests
• Invariants can also be expressed as programs or tests

• Possibility to use models/programs for proving

Prove & Run 45

A more concrete example

Prove & Run 46

A more concrete example

Prove & Run 47

A more concrete example

Prove & Run 48

A more concrete example

Prove & Run 49

SMART language specificities

• Functional (values manipulation) but with a imperative style
• Can be used at different abstraction levels
• Functions are partial
• Possible to associate proof obligations with logical paths in the

execution graph
• Proofs pictured and guided as symbolic debugging
• Makes certification easier

• Properties can be expressed as tests
• Invariants can also be expressed as programs or tests

• Possibility to use models/programs for proving

Prove & Run 50

A more concrete example

// code chunks // Property (2)

Prove & Run 51

A more concrete example

Prove & Run 52

A more concrete example

Prove & Run 53

Example of properties to be proven
• Theorem0: removeFirst(x+,e,f+) => member(x,e) ;

• Theorem1: addLast(x,e,f+) => member(x,f) ;

• Theorem2: member(x,e) => addLast(y,e,f+) => member(x,f) ;

Prove & Run 54

Intermediate language: SMIL

Prove & Run 55

Indexed variables. Logical traces. Proof
structures. Congruence

// Theorem0 : Unfold
[empty:true]
{

removeFirst(x+,e,_);
{

f :=e ;
while
{

[empty :error]removeFirst(y+,f,f+) ;
[true:empty,false :true](x=y) ;

}
}

}

Prove & Run 56

Indexed variables. Logical traces. Proof
structures. Congruence

// Theorem0 : Unfold

[empty:true]

{

removeFirst(x+,e,_);

{

f :=e ;

while

{

[empty :error]removeFirst(y+,f,f+) ;

[true:empty,false :true](x=y) ;

}

}

}

// b* -> [b] b*

Prove & Run 57

Indexed variables. Logical traces. Proof
structures. Congruence

// Theorem0 : Unfold + Unrolled
[empty:true]
{

removeFirst(x+,e,_);
{

f :=e ;
[empty:error]removeFirst(y+,f,f+) ;
[true:empty, false:true](x=y) ;
while
{

[empty :error]removeFirst(y+,f,f+) ;
[true:OK, false:true](x=y) ;

}
}

}

Prove & Run 58

Indexed variables. Logical traces. Proof
structures. Congruence

Logical trace:

• [true]removeFirst(x1+,e1,g1+) ;
• [true]equals(f1+,e1);
• [empty:error]removeFirst(y1+,f,f+) ;

Transitive closing of congruence:
• [true]removeFirst(x1+,e1,g1+) ;
• [true]equals(e1+,e1);
• [empty:error]removeFirst(x1+,e1,g1+) ;

Prove & Run 59

Indexed variables. Logical traces. Proof
structures. Congruence

Logical trace:

• [true]removeFirst(x1+,e1,g1+) ;
• [true]equals(f1+,e1);
• [true]removeFirst(y1+,f,f+) ;
• [false :true](x1=y1) ;

Transitive closing of congruence:
• [true]removeFirst(x1+,e1,g1+) ;
• [true]equals(e1+,e1);
• [true]removeFirst(x1+,e1,g1+) ;
• [false :error](x1=x1) ;

Prove & Run 60

Indexed variables. Logical traces. Proof
structures. Congruence

// Theorem0 : Unfold + Unrolled
[empty:true]
{

removeFirst(x+,e,_);
{

f :=e ;
[empty:error]removeFirst(y+,f,f+) ;
[true:empty, false:error](x=y) ;
while
{

[empty :error]removeFirst(y+,f,f+) ;
[true:OK, false:true](x=y) ;

}
}

}

Prove & Run 61

Composition with Synchronization

// Theorem1 Unfold
[OK:true]
{
1: [empty :OK]addLast(x,e,f+);

{
2: g:=f ;

while
{

3: [empty:false]removeFirst(y+,g,g+);
4: [true:OK, false:true](x=y);

}
}

}

Rappel Theorem1: addLast(x,e,f+) ; => member(x,f) ;

Prove & Run 62

Composition with Synchronization

// code chunks // Property (2)

{

1: addLast(x,e,f+) ;

while

{

2: [empty :exit]removeFirst(y+,e,e+) ;

3: [empty :error]removeFirst(z+,f,f+) ;

4: [false:error](y=z) ;

}

5: [empty :error]removeFirst(z+,f,f+) ;

6: [false:error](x=z) ;

7: [true:error,empty :true]removeFirst(z+,f,f+) ;

}

Prove & Run 63

Composition Theorem1Unfold Axiom2

Prove & Run 64

Simplification Composition Theorem1Unfold
Axiom2 (propagation congruence)

Prove & Run 65

Composition with Synchronization
// code chunks // Property (2)

{

1: addLast(x,e,f+) ;

while

{

2: [empty :exit]removeFirst(y+,e,e+) ;

3: [empty :error]removeFirst(z+,f,f+) ;

[false:error](y=z) ;

}

4: [empty :error]removeFirst(z+,f,f+) ;

5: [false:error](x=z) ;

6: [true:error,empty :true]removeFirst(z+,f,f+) ;

}

Theorem2: member(x,e); addLast(y,e,f+); => member(x,f) ;

Prove & Run 66

New example of (double) composition for
theorem 2 proof

•
•

LemmaUnfold : member(x,e) => member(x,e) ;

Prove & Run 67

New example of (double) composition for
theorem 2 proof

•
•

LemmaUnfold : [false:true]member(x,e) ;

Prove & Run 68

Further Documentation
• “Inferring Frame Conditions with Static Correlation
Analysis“, Oana Andreescu, Thomas Jensen, Stéphane
Lescuyer, Benoît Montagu, POPL, 2019
• “Security Filters for IoT Domain Isolation“, Dominique
Bolignano, Florence Plateau, ISoLa, 2018
• “Formally Proven and Certified Off-The-Shelf Software
Components“, Dominique Bolignano, C&SAR, 2016
• “Proven Security for the Internet of Things“, Dominique
Bolignano, Embedded Conference 2016
• “ProvenCore: Towards a Verified Isolation Micro-Kernel“,
Stéphane Lescuyer, 10th HiPEAC Conference, 2015

http://www.provenrun.com/wp-content/uploads/2019/01/POPL19-Inferring-Frame-Conditions-with-Static-Correlation-Analysis_preprint.pdf
https://www.provenrun.com/about/security-filters-for-iot-domain-isolation-isola/
http://www.provenrun.com/about/formally-proven-and-certified-off-the-shelf-software-components/
http://www.provenrun.com/about/proven-security-for-the-iot/
http://www.provenrun.com/wp-content/uploads/2015/01/Prove-Run-ProvenCore-Towards-a-Verified-Isolation-Micro-Kernel.pdf

Prove & Run 69

Conclusions / Future Work

• Applicable to a very large range of market
segments and situations

• Everything doesn’t need to be modelled nor
proven (hypotheses, resistance to physical
attacks, properties appropriateness, unsuitable
architectures, human chain, etc.)

• More features to be added,
• Enlarging the scope of evaluation to hardware is

planned,
• Some optimizations to be done if required,
• Other kernels to be handled,

