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Side channels and Security
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Abstract observation models
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Abstract model Real hardware
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SCAM-V: Side Channel
Abstract Model Validator
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BIR

Abstract Assembly
Language

Infinite number of
register variables
Assignments, jumps,
cond. jumps

BIR expressions:

arithmetic, bitwise, etc.
Memory is an array
(Attacker) Observations




BIR

Observation statements

OBS(c, exp)

outputs the evaluation
of exp in the current
state,

if c evaluates to true

OBS(true, exp) = OBS(exp)




Lifting and BIR

Binary BIR

B.eqg 12 — [10: CJMP 7z 12 11]

mul x1 x2 x3 —— [11: X1= X2*X3; JMP 12]
12: 1ldr x2 {x1} +8 . [12: OBS([tag(X1)]):

X2= LOADWEM, X1),; Xl= X1+8;
HALT ]

Obs model:

Cache tag

Observation added

according to
selected model
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SCAM-V Weakest Relation Synthesis

. CJMP 7 12 11]
. X1= X2*X3; JMP 12] ‘

: OBS([tag(x1)]); > 7 2/ \ =z
X2= LOAD (MEM, X1); Xl= X1+8; x
HALT]

Symbolic execution

[tag (X1)] [tag (X2*X3) ] [tag (X17)] [tag (X2"*X3")]

4

(Z N\ Z = tag(X1) = tag(X1’))
A (Z A =Z = tag(X1) = tag(X2'*X3))
N (7Z N\ Z = tag(X2*X3) = tag(X1’))
A (RZ A ~Z = tag(X2*X3) = tag(X2*X3"))
N address constraints (...)

Relation
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SCAM-V Pipeline Overview
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Testing / Measuring the channel

e ARMvV8 (Raspberry Pi 3) e Cortex-M0 (MicroBit)

e Observation: tag and operation e Observation: program counter

of every memory access ) .
y y e Measuring: internal system clock

e Measuring: TrustZone
instructions for cache inspection
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SCAM-V: Side
Channel Abstract
Model Validator

Summary

Modern architectures are too complex to

directly analyze side-channels

Abstract models based on system-state
observations
o  PC security model, Cache-line + tag
of memory access

Assumption:

States with equivalent observations in the
model are

indistinguishable to the attacker on real
hardware

Not always true! e.g. Spectre

SCAM-V validates this assumption




