
Validation of Abstract Side-channel
Models for Computer Architectures
Andreas Lindner1, Hamed Nemati2, Matthias Stockmayer2,
Pablo Buiras1, Roberto Guanciale1 and Swen Jacobs2

1 KTH Royal Institute
of Technology

2 CISPA Helmholtz Center
for Information Security

(work in progress)
ENTROPY ‘19,
Stockholm

Side channels and Security

Program

P(a) ∼ P(b) if a ∼ b, ∀ a b
Noninterference

2

Side channels and Security

Processor

Program

Cache hierarchy Pipelining

Speculation
Weak memory

models

Hyperthreading

Multicore

Architecture

3

Abstract observation models

....
LD LD ST

MOV …
ADD …
CMP ...
LD ...
B label
...

Program text

Program trace

σ

σ ∼P σ’ Observational
Equivalence

4

σ’
LD LDST

SCAM-V: Side Channel
Abstract Model Validator

σ ∼P σ’ σ ≃P σ’⟹
?

Abstract model Real hardware

5

https://en.wikipedia.org/wiki/%E2%89%83

SCAM-V Pipeline Overview

approx
 ∼P

6

σ ≃P σ’ σ ∼P σ’

https://en.wikipedia.org/wiki/%E2%89%83

BIR

7

● Infinite number of
register variables

● Assignments, jumps,
cond. jumps

● BIR expressions:
arithmetic, bitwise, etc.

● Memory is an array
● (Attacker) Observations

Abstract Assembly
Language

BIR

Observation statements

OBS(c, exp)

outputs the evaluation
of exp in the current
state,
if c evaluates to true

OBS(true, exp) = OBS(exp)

8

Lifting and BIR

9

 B.eq l2
 mul x1 x2 x3
l2: ldr x2 {x1} +8

Binary

[l0: CJMP Z l2 l1]
[l1: X1= X2*X3; JMP l2]
[l2: OBS([tag(X1)]);
 X2= LOAD(MEM, X1); X1= X1+8;
 HALT]

BIR

Obs model:
Cache tag Observation added

according to
selected model

SCAM-V Pipeline Overview

10

SCAM-V Weakest Relation Synthesis

[l0: CJMP Z l2 l1]
[l1: X1= X2*X3; JMP l2]
[l2: OBS([tag(X1)]);
 X2= LOAD(MEM, X1); X1= X1+8;
 HALT]

Z ¬Z

[tag(X1)] [tag(X2*X3)]

Z’ ¬Z’

[tag(X1’)] [tag(X2’*X3’)]

⨯

 (Z ∧ Z’ ⇒ tag(X1) = tag(X1’))
∧ (Z ∧ ¬Z’ ⇒ tag(X1) = tag(X2’*X3’))
∧ (¬Z ∧ Z’ ⇒ tag(X2*X3) = tag(X1’))
∧ (¬Z ∧ ¬Z’ ⇒ tag(X2*X3) = tag(X2’*X3’))
∧ address constraints (...)

11

Symbolic execution

Relation

σ ∼P σ’

SCAM-V Pipeline Overview

SMT

12

σ ≃P σ’ σ ∼P σ’

https://en.wikipedia.org/wiki/%E2%89%83

Testing / Measuring the channel

13

● ARMv8 (Raspberry Pi 3)

● Observation: tag and operation
of every memory access

● Measuring: TrustZone
instructions for cache inspection

● Cortex-M0 (MicroBit)

● Observation: program counter

● Measuring: internal system clock

SCAM-V: Side
Channel Abstract
Model Validator

● Modern architectures are too complex to

directly analyze side-channels

● Abstract models based on system-state

observations

○ PC security model, Cache-line + tag

of memory access

● Assumption:
States with equivalent observations in the
model are
indistinguishable to the attacker on real
hardware

● Not always true! e.g. Spectre

● SCAM-V validates this assumption

14

Summary

