Validation of Abstract Side-channel
Models for Computer Architectures

Andreas Lindner!, Hamed Nemati?, Matthias Stockmayer?,
Pablo Buiras', Roberto Guanciale! and Swen Jacobs?

(work in progress) '"KTH Royal Institute

ENTROPY ‘19, of Technology
Stockholm

2 CISPA Helmholtz Center
for Information Security

Side channels and Security

[Noninterference } N

L P(a) ~, P(b)ifa~/Db, V ab

Side channels and Security

I~y
o

a’d
Se

Program

(®
processor ,{ Architecture J\
! ? \
perthreading peculation ’
3 y Weak memory

Cache hierarchy @@ Pipelining Multicore G} models

3

Abstract observation models

Program trace @ @ @

0 L ® ® ® ® ® ® ® ®
LD LD ST

)
O ¢ ¢ o o o o o o o
ST LD LD

Program text

MOV ...

ADD .. - / Observational
CMP ... (:7 (:5 .
0. @ P Equivalence

B label

Abstract model Real hardware

O”PO — 0"—'P0

?

SCAM-V: Side Channel
Abstract Model Validator

https://en.wikipedia.org/wiki/%E2%89%83

SCAM-V Pipeline Overview

Binary . BIR
Program Lifter . Wgakest
generator observations relation synth
Mainloop| - - - Observation refinement__, lReIation approx
v Final Test T i
easure :
i state | Test on inputs est case
channel processor gen

Per-program test loop

https://en.wikipedia.org/wiki/%E2%89%83

BIR

Abstract Assembly
Language

Infinite number of
register variables
Assignments, jumps,
cond. jumps

BIR expressions:

arithmetic, bitwise, etc.
Memory is an array
(Attacker) Observations

BIR

Observation statements

OBS(c, exp)

outputs the evaluation
of exp in the current
state,

if c evaluates to true

OBS(true, exp) = OBS(exp)

Lifting and BIR

Binary BIR

B.eqg 12 — [10: CJMP 7z 12 11]

mul x1 x2 x3 —— [11: X1= X2*X3; JMP 12]
12: 1ldr x2 {x1} +8 . [12: OBS([tag(X1)]):

X2= LOADWEM, X1),; Xl= X1+8;
HALT]

Obs model:

Cache tag

Observation added

according to
selected model

SCAM-V Pipeline Overview

Binary . BIR
Program Lifter . Wgakest
generator observations relation synth
. . A
Main loop ,-- - Dhsereation renpenient . lRelation

" Final Test T

easure .

e state | Test on inputs est case
channel processor gen

Per-program test loop f

10

SCAM-V Weakest Relation Synthesis

. CJMP 7 12 11]
. X1= X2*X3; JMP 12] ‘

: OBS([tag(x1)]); > 7 2/ \ =z
X2= LOAD (MEM, X1); Xl= X1+8; x
HALT]

Symbolic execution

[tag (X1)] [tag (X2*X3)] [tag (X17)] [tag (X2"*X3")]

4

(Z N\ Z = tag(X1) = tag(X1’))
A (Z A =Z = tag(X1) = tag(X2'*X3))
N (7Z N\ Z = tag(X2*X3) = tag(X1’))
A (RZ A ~Z = tag(X2*X3) = tag(X2*X3"))
N address constraints (...)

Relation

11

SCAM-V Pipeline Overview

Binary . BIR
Program Lifter . Wgakest
generator observations relation synth
Main loop Lo O nauon FRnEnEnL ’IA lREIation

T Final Test m
. .
state | Test on inputs Test case

side
channel processor gen

Per-program test loop

12

https://en.wikipedia.org/wiki/%E2%89%83

Testing / Measuring the channel

e ARMvV8 (Raspberry Pi 3) e Cortex-M0 (MicroBit)

e Observation: tag and operation e Observation: program counter

of every memory access) .
y y e Measuring: internal system clock

e Measuring: TrustZone
instructions for cache inspection

13

SCAM-V: Side
Channel Abstract
Model Validator

Summary

Modern architectures are too complex to

directly analyze side-channels

Abstract models based on system-state
observations
o PC security model, Cache-line + tag
of memory access

Assumption:

States with equivalent observations in the
model are

indistinguishable to the attacker on real
hardware

Not always true! e.g. Spectre

SCAM-V validates this assumption

