Validation of Abstract Side-channel Models for Computer Architectures

Andreas Lindner¹, Hamed Nemati², Matthias Stockmayer², **Pablo Buiras**¹, Roberto Guanciale¹ and Swen Jacobs²

(work in progress) ENTROPY '19, Stockholm ¹ KTH Royal Institute of Technology

² CISPA Helmholtz Center for Information Security

Side channels and Security

Noninterference
P(a)
$$\sim P(b)$$
 if a $\sim b$, \forall a b

Side channels and Security

Abstract observation models

...

Abstract model

Real hardware

σ~_Ρσ΄ σ ≃_P σ' \Rightarrow ?

SCAM–V: Side Channel Abstract Model Validator

SCAM-V Pipeline Overview

BIR

Abstract Assembly Language

- Infinite number of register variables
- Assignments, jumps, cond. jumps
- BIR expressions: arithmetic, bitwise, etc.
- Memory is an array
- (Attacker) Observations

BIR

Observation statements

OBS(c, exp)

outputs the evaluation of exp in the current state, if c evaluates to true

OBS(true, exp) = OBS(exp)

Lifting and BIR

Binary	<u>BIR</u>	
B.eq 12 mul x1 x2 x3 12: ldr x2 {x1} +8	[10: [11: [12:	CJMP Z 12 11] X1= X2*X3; JMP 12] OBS([tag(X1)]); X2= LOAD MEM, X1); X1= X1+8;
Obs model: Cache tag		HALT] Observation added according to selected model

SCAM-V Pipeline Overview

SCAM-V Weakest Relation Synthesis

SCAM-V Pipeline Overview

Testing / Measuring the channel

- ARMv8 (Raspberry Pi 3)
- **Observation**: tag and operation of every memory access
- **Measuring**: TrustZone instructions for cache inspection

- Cortex-M0 (MicroBit)
- **Observation**: program counter
- **Measuring**: internal system clock

SCAM-V: Side Channel Abstract Model Validator

Summary

- Modern architectures are too complex to directly analyze side-channels
- Abstract models based on system-state observations
 - PC security model, Cache-line + tag of memory access
- Assumption:
 States with *equivalent* observations in the
 model are

indistinguishable to the attacker on real hardware

- Not always true! e.g. Spectre
- SCAM-V validates this assumption