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Abstract—Modern computer architectures include complex
features that make it infeasible to analyze their effects on
channels that may compromise program security. Abstract side-
channel models have been proposed to approximate these flows
in terms of system state observations, thus making the anal-
ysis tractable. However, using these models to verify security
properties relies on the assumption that states with equivalent
observations would be indistinguishable to the attacker on real
hardware. In this work, we introduce a methodology and tool to
validate side-channel models, testing program inputs that lead
to equivalent observations in automatically-generated programs,
and measuring against channels on the hardware. We partition
the input state space based on the observation model and rely
on an adaptive refinement of the model to guide the validation.

Index Terms—side channel analysis, model validation, infor-
mation flow security

I. INTRODUCTION

Information flow analysis of systems that use complex
hardware need abstractions. In fact, it is infeasible to pre-
cisely model and analyse the wealth of features of a modern
processor, like caches and pipelining, and their effects on
channels that can be accessed by an attacker, like execution
time and power consumption. Several analyses [1], [2] use
observational models [3] to handle this complexity. These
models overapproximate information flow to channels in terms
of system state observations performed by the attacker. In
essence, states that lead to the same attacker observations
should be indistinguishable by measuring all channels avail-
able to the attacker.

The amount of details hidden by these observational models
makes it hard to trust their soundness. Multiple implemen-
tations of the same architecture, the possibility of executing
multiple instructions simultaneously, speculative execution,
and other optimizations can introduce side channels that
may be overlooked by the abstract models. This has been
demonstrated by the recent Spectre attack [4]. Therefore, it is
essential to validate if the abstract models adequately reflect
all information flows introduced by low level features.

In this work we propose a framework and a tool (Scam-V1)
for automatically validating observational models of proces-

1Side-Channel Abstract Model Validator

Lifter +
observations

Weakest
relation synth

Test case
gen

Program
generator

Binary BIR

Relation

Test
inputs

Final
state

Per-program test loop

Observation refinement
Main loop

Test on
processor

Measure
side

channel
Driver

Fig. 1. Validation framework architecture

sors and their implementation. We iterate over test programs
which consist of short but interesting sequences of instructions.
We use an automatic procedure to partition the program
input state space into classes, where all elements of a class
generate the same attacker observations. This is done via
synthesizing an observation equivalence relation for a given
model. Validation of the model is then performed by testing
on real hardware to ensure that two states of the same class are
indeed indistinguishable. Each pair of input states is generated
by using an SMT solver and searching for satisfiability of the
synthesised relation.

In Section II, we present the design of Scam-V. We build
our framework on top of the existing binary analysis tool
TrABin [5], which allows us to analyse ARMv8-A and Cortex-
M0 programs by translating them to an intermediate language.
Our extension annotates the programs with observations ac-
cording to a model under validation, which is described in
details in Section II. Section III describes the synthesis of the
observation equivalence relation by executing the test program
symbolically. In Section IV, we present our strategy to guide
the search towards cases that are more likely to demonstrate
unsoundness. We adaptively refine the observational model,
searching for more state information that could affect indistin-
guishability of executions. Finally, Sections V and VI briefly
present the concluding remarks and the related work.

II. DESIGN

At a high level, Scam-V generates random binaries and
attempts to construct initial states that lead to equivalent obser-
vations at the level of the model, but distinguishable by real



// b.eq l2
[l0: CJMP Z l2 l1]
// mul x1 x2 x3
[l1: X1= X2*X3; JMP l2]
// ldr x2 {x1} +8
[l2: X2= LOAD(MEM, X1); X1= X1+8; HALT]

Fig. 2. BIR lifting example

[l0: CJMP Z l2 l1]
[l1: X1= X2*X3; JMP l2]
[l2: OBS(sline(X1),[tag(X1)]);

X2= LOAD(MEM, X1); X1= X1+8; HALT]

Fig. 3. BIR observation example

hardware. In essence, finding such counterexamples implies
that the model of the side channel is not precise enough, and
leads to a potential vulnerability. Figure 1 illustrates the main
workflow of Scam-V.

The first step, program generation, involves generation of
binaries for a given architecture. This can be purely random
or based on some heuristics, like model counting [6] or feed-
back directed [7], to generate more meaningful binaries.

In order to achieve a degree of hardware independence, we
rely on an architecture-agnostic intermediate representation
known as BIR [5], which has been introduced in previous
work. BIR is an abstract assembly language that includes
statements that work on memory, arithmetic expressions, and
jumps. The second step of the workflow takes the specific bi-
nary from the generator and transforms it into a BIR program,
a process known as lifting. Figure 2 shows an example of code
in a generic assembly language and its lifting to BIR. In this
code we perform a conditional jump to l2 when Z holds, and
otherwise we set X1 to the multiplication X2 ∗X3. Then,
at l2 we load a word from memory at address X1 into X2,
and finally add 8 to the pointer X1. Note that the structure of
BIR requires the program to be organized into blocks, which
consist of jump-free statements and end in either a conditional
jump (CJMP), an unconditional jump (JMP), or HALT.

BIR also has explicit support for observations, which are
produced by statements that evaluate a list of expressions
in the current state. During the lifting process, we insert
observation statements into the resulting BIR program to rep-
resent the observational power of the side channel. To account
for expressive observation models, BIR allows conditional
observation. The condition is represented by an expression
attached to the observation statement. The observation itself
happens only if this condition evaluates as true in the cur-
rent state. Figure 3 illustrates the observations added to the
previous example. We consider a scenario where the system
has data caches that have been partitioned: some lines are
exclusively accessible by the victim (i.e. the program), some
lines can be shared with the attacker. We add the statement
OBS(sline(X1),[tag(X1)]) for the load instruction,

which consists of an observation condition (sline(X1))
and a list of expressions to observe ([tag(X1)]). The
function sline checks that its argument is in a shared line
and therefore visible to the attacker. The tag function extracts
the cache tag in which its argument is stored.

Comparing traces of these observations leads to a notion of
observational equivalence, defined as a relation on program
states. States s1 and s2 are observationally equivalent for
program P (written as s1 ∼P s2), if the observation traces
of running P on s1 and s2 are equal. Note that this notion is,
in principle, different from the notion of indistinguishability
– two states are indistinguishable if a real-world attacker is
not able to distinguish between them by means of the side
channel in the real hardware. However, the use of an abstract
model to reason about side channels relies on an assumption
that observational equivalence implies indistinguishability to
the real-world attacker. It is precisely this assumption – the
soundness of the model – that we attempt to validate in this
work.

The next step in the pipeline consists in synthesizing the
weakest relation on program states that guarantees observa-
tional equivalence. This relation is used to drive the generation
of test cases – states that can be used as inputs to the program
– by means of a standard SMT solver. At this point, we run
the original binary on those states using the real hardware, and
then measure the side channel. In general, the expectation is
that, since the chosen test cases satisfy the synthesized relation,
there should be no way to distinguish between them on the
real hardware either. Unless we have found a counterexample,
the driver takes over and decides among three alternatives:
generating more test cases for the same program, generating
a new binary to start the process anew, or refining the
observational model to reduce the search space of the analysis.
The latter will be discussed in Section IV.

III. SYNTHESIS OF WEAKEST RELATION

Synthesis of the weakest relation is based on standard
symbolic execution techniques. In the following we use X to
range over symbols, and c, e, and p to range over symbolic
expressions. A symbolic state σ consists of a concrete program
counter iσ , a path condition pσ , and a mapping Mσ from
variables to symbolic expressions. We write e(σ) = e for the
symbolic evaluation of the expression e in σ, and e(s) for the
value obtained by substituting the symbols of the symbolic
expression e with the values of the variables in s, where s is
a concrete state.

Symbolic execution is straightforward and produces one ter-
minating state for each possible execution path: a terminating
state is produced when HALT is encountered, and the execution
of CJMP c l1 l2 from state σ follows both branches using the
path conditions c(σ) and ¬c(σ). Symbolic execution of the
example in Figure 3 produces two terminating states σ1 and
σ2. For the first branch we have pσ1 = Z and Mσ1 = {X1 →
X1 + 8, X2 → LOAD(M,X1)} (we omit the variables that
are not updated), and for the second branch pσ2

= ¬Z and
Mσ2

= {X1 → X2 ∗X3 + 8, X2 → LOAD(M,X2 ∗X3)}.



We extend the standard symbolic execution to handle obser-
vations. That is, we add to each symbolic state a list lσ , and the
execution of OBS c ~e in σ appends the pair (c,~e) to lσ , where
c = c(σ) and ~e[i] = ~e[i](σ) are the symbolic evaluation of the
condition and expressions of the observation. For instance, in
the example the list for the terminating states are

lσ1
= [(sline(X1), [tag(X1)])]

lσ2
= [(sline(X2 ∗X3), [tag(X2 ∗X3)])]

Let Σ be the set of terminating states produced by the
symbolic execution, s be a concrete state and σ ∈ Σ be a
symbolic state such that pσ(s) holds, and executing the pro-
gram from the initial state s produces the value Mσ(X)(s) for
the variable X . Moreover, let lσ = [(c1,~e1) . . . (cn,~en)], then
the generated observations are (c1,~e1)(s) ◦ . . . ◦ (cn,~en)(s),
where ◦ represents list concatenation and (c1,~e1)(s) = [~e1(s)]
if c1(s) otherwise [].

The observation equivalence relation (denoted by ∼) is
synthesized by ensuring that every possible pair of execution
paths have equivalent lists of observations. Formally s1 ∼ s2

is defined as:∧
(σ1,σ2)∈Σ×Σ

(pσ1
(s1) ∧ pσ2

(s2)⇒ lσ1
(s1) = lσ2

(s2))

For the purpose of generating input test cases we can
synthesize a smaller relation, since we treat the pairs (σ1, σ2)
and (σ2, σ1) as the same. In the example, the synthesized
relation (after simplification) is as follows (primed symbols
represent variables of the second state):

Z ∧ Z′ ⇒ (sline(X1) = sline(X′1) ∧
sline(X1)⇒ (tag(X1) = tag(X′1)))

∧ Z ∧ ¬Z′ ⇒ (sline(X1) = sline(X′2 ∗X′3) ∧
sline(X1)⇒ (tag(X1) = tag(X′2 ∗X′3)))

∧ ¬Z ∧ ¬Z′ ⇒ (sline(X2 ∗X3) = sline(X′2 ∗X′3) ∧
sline(X2 ∗X3)⇒ (tag(X2 ∗X3) = tag(X′2 ∗X′3)))

If the cache has 128 lines, 64 bytes per line, and only the
first 10 lines are shared, then the following states satisfy the
relation, because they both lead the program to access the third
cache line:

s1 =


Z = T
X1 = 130
X2 = 123546
X3 = 87465

 ∼


Z = F
X1 = 37846
X2 = 2
X3 = 64

 = s2

Also the following states satisfy the relation, because they both
lead the program to access cache lines that are not shared,
therefore they generate no observations:

s′1 =


Z = F
X1 = 3246
X2 = 64
X3 = 30

 ∼


Z = F
X1 = 856
X2 = 12
X3 = 64

 = s′2

Fig. 4. Model lattice

Fig. 5. Re-partitioning of the observational equivalence class using two more-
restrictive models. If the model under test is sound then all states in C1 are
indistinguishable.

IV. OBSERVATION REFINEMENT

In practice, the size of an observation equivalence class can
be enormous, because there are many variations to the initial
states that cannot have effects on the channels available to the
attacker. In the example, every state in S1 = {s′1{v/X1} |
v ∈ 264} and S2 = {s′2{v/X1} | v ∈ 264} are in the same
equivalence class. Testing every pair in S1 × S2, in addition
to being infeasible, is unlikely to find any distinguishable
executions, because if the flag Z is not set then the register
X1 is irrelevant for the execution. The same happens for
every register or memory location that does not affect the
execution at all or that cannot affect the side channel (i.e. in
the majority of architectures the arguments of integer additions
do not affect the execution time). Finding a needle (two states
that are distinguishable on real hardware) in the haystack (an
observation equivalence class) seldom succeeds without proper
guidance.

We use properties of observation equivalence to guide our
search in meaningful directions. Intuitively, for every architec-
ture there is an observational model that is sound: the model
that observes the complete state after each instruction. For this
model, which we represent by >, the observation equivalence
relation is the identity. Moreover, the model that produces
no observations, represented by ⊥, considers all states as
indistinguishable. Given two observational models M1 and M2

and a program p, we say that M1 is less-restrictive than M2,
and we write M1 vp M2, if ∼M2

p ⊆∼M1
p , i.e. if observational

equivalence w.r.t. M2 entails observational equivalence w.r.t.
M1. Model M1 is generally-less-restrictive than M2, written
M1 v M2, if M1 vp M2 for any program p. Both v and
vp form bounded lattices, whose top and bottom elements

are > and ⊥ respectively (see Figure 4).



We use this lattice to refine the model under test in the
validation loop. For a program p, the initial model M1

induces an initial partition of the input states into observation
equivalence classes (see Figure 5). We use the SMT solver and
the relation synthesis to find two states s1 and s2 that belong
to the same class C1 and we test their indistinguishability
on the hardware. In case of indistinguishability, we pick up
a refined model M2 such that M1 vp M2. This allows
us to repartition C1 into M2-observation equivalence classes
C1

2 . . . C
n
2 . Let s1 ∈ Ci2, we now use the SMT solver and

the relation synthesis to find a state s′2 that is in C1 and
not in Ci2 and we test its indistinguishability with s1. Their
indistinguishability validates the hypothesis that the additional
observations introduced by M2 are not needed. We then repeat
this for several other models that satisfy M1 vp M ′2.

The generation of the refined models requires knowledge of
the architecture and is mainly syntax-driven. For example, we
may add bits to the masks sline(e) and tag(e) for testing
different cache geometries and properties, add OBS(true, X1)
to l2 for checking variations of memory latency for different
addresses, add observation of the arguments of multiplication
to l1 for checking if multiplication is not constant-time,
add observation of the program counter to every block for
accounting branch effects. The same mechanism can be used
in conjunction with shadow variables to analyze the effect of
hidden state components. For example, we may introduce a
shadow variable cache, which is a mapping from addresses to
boolean and is never updated by the program, to represent if
an address is in the cache before the program starts, and add
the observation OBS(true, cache(X1)) to line l2.

V. ONGOING VALIDATION AND FUTURE WORK

We are performing experiments using Scam-V on two archi-
tectures: ARMv8 and Cortex-M0. For ARMv8, we consider
a model that abstracts the side channels resulting from the
multi-way data-cache. The attacker can observe the tag and
operation (i.e. load or store) of every memory access that
targets a shareable cache line. The cache line offsets are not
observable, because caches read and write complete lines from
memory. We use Raspberry PI 3 for validation and we leverage
TrustZone instructions for cache inspection to measure the
channel. Since the CPU does not support speculative or out-of-
order execution, we expect the model to be correct if the data-
cache provides isolation among lines. This hypothesis could be
wrong in case of prefetching (i.e. loading adjacent addresses in
cache of cache misses) or global state for replacement policy.

For Cortex-M0, which is a cacheless microcontroller, we
validate an abstract model of a timing channel, where the
attacker can observe the program counter (and therefore the
executed instruction). We use MicroBit for validation and
measure execution time using the internal system clock. We
expect the model to be sound, because the only instruction with
variable execution time is conditional branch and its execution
affects the observable program counters. This hypothesis is vi-
olated if the system memory has different latency for different
addresses.

Scam-V is implemented in HOL4 and parts of its in-
frastructure (e.g. the transpiler) consists of proof-producing
procedures. We plan to develop proof-producing versions of
the symbolic execution and synthesis of weakest relation.
This provides a certifying analysis of a program’s observation
determinism by demonstrating that low-equivalence implies
the weakest relation.

We are also investigating other uses of the lattice of ob-
servational models. Intuitively, if a counterexample is found,
the more restrictive relation can be used to search for sound
models and repair the channel abstraction. On the other hand,
once a model is validated, we could test less-restrictive models
to find a better abstraction and, if all less-restrictive models
are incorrect, validate the precision of the model.

VI. RELATED WORK

Verification of processor architecture or validating their
abstract model is well studied of late [8], [9]. However, all
these approaches focus on functional correctness and are not
designed to identify violations of information flow properties.
In contrast, we use relational analysis based on observation
determinism, as introduced in [10], to validate models of non-
functional properties.

Different observation models have been proposed. The
program counter security model [3] has been used when the
execution time depends on the control flow of the victim.
Extensions of this model add to the observations the data
that may affect the execution time of an instruction, like the
arguments of the instruction in multi-cycle multiplication. In
case of caches, the memory address accessed by the program
is considered observable.

Many analysis tools use these observation models. Ct-
verif [1] implements a sound information flow analysis by
proving observation equivalence constructing a product pro-
gram. CacheAudit [2] quantifies information leakage by using
abstract interpretation.

The risks of using unsound models for these analyses have
been demonstrated by the recent Spectre attack family [4],
which exploits speculation to leak data through caches. Several
other low-level architectural details require special caution
when using these abstract models; some properties assumed by
the models could be unmet, for instance cache clean operations
do not always clean residual state in the implementation of
replacement policies [11]. Furthermore, the most common
general-purpose processors do not provide enough means to
close all leakage, i.e. some shared state is not possible to clean
properly on a context switch [12].
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[2] G. Doychev, B. Köpf, L. Mauborgne, and J. Reineke, “CacheAudit: A
Tool for the Static Analysis of Cache Side Channels,” ACM Trans. Inf.
Syst. Secur., vol. 18, no. 1, pp. 4:1–4:32, 2015.

[3] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner, “The Program
Counter Security Model: Automatic Detection and Removal of Control-
Flow Side Channel Attacks,” in ICISC, 2006, pp. 156–168.

[4] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre Attacks: Exploiting Speculative Execution,” in S&P, 2019.

[5] A. Lindner, R. Guanciale, and R. Metere, “TrABin: Trustworthy analyses
of binaries,” Science of Computer Programming, vol. 174, pp. 72 – 89,
2019.

[6] S. Heinz and M. Sachenbacher, “Using Model Counting to Find Optimal
Distinguishing Tests,” in CPAIOR, 2009, pp. 117–131.

[7] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-Directed
Random Test Generation,” in ICSE, 2007, pp. 75–84.

[8] J. Bhadra, M. S. Abadir, L.-C. Wang, and S. Ray, “A survey of hybrid
techniques for functional verification,” Design & Test of Computers,
no. 2, pp. 112–122, 2007.

[9] B. Campbell and I. Stark, “Randomised Testing of a Microprocessor
Model Using SMT-Solver State Generation,” in FMICS, 2014, pp. 185–
199.

[10] M. Balliu, M. Dam, and R. Guanciale, “Automating Information Flow
Analysis of Low Level Code,” in CCS, 2014, pp. 1080–1091.

[11] Q. Ge, Y. Yarom, and G. Heiser, “Do Hardware Cache Flushing
Operations Actually Meet Our Expectations,” ArXiv e-prints, 2016.

[12] Q. Ge, Y. Yarom, F. Li, and G. Heiser, “Your Processor Leaks
Information-and There’s Nothing You Can Do About It,” CoRR, vol.
abs/1612.04474, 2017.


