
Generating bare-metal C code from
a high-level pure specification

Olivier Delande

Prove & Run

Entropy 2019, Stockholm, 16/06/2019

Olivier Delande (Prove & Run) Generating bare-metal C code Entropy 2019, 16/06/2019 1 / 9



Context

To develop our micro-kernel ProvenCore, we:

wrote the program, specs, and stated theorems in Smart, a pure
functional language;

interactively proved the theorems in our IDE;

generated a bare-metal C implementation of the program (i.e.,
without runtime support).

Challenge of code generation: compile high-level constructs optimized for
reasoning to constrained low-level executable C code.

Olivier Delande (Prove & Run) Generating bare-metal C code Entropy 2019, 16/06/2019 2 / 9



Compiling Smart to C

Some aspects of the gap between Smart and C:

Ghost code: Smart programs include ghost data structures and
computations that solely support reasoning; the generator safely
removes them from the program.

Functional updates (this talk): Smart’s data structures are
immutable; a program updates them by producing new values; we
compile these functional updates to in-place updates.

C implementation details: the programmer can customize certain
types, e.g. to fit a mandated memory layout.

Olivier Delande (Prove & Run) Generating bare-metal C code Entropy 2019, 16/06/2019 3 / 9



Functional updates

In a pure language, updates are functional, e.g. in the program:

// A function pausing a process: takes the current value

// of the process and returns the new value

pause(p1 : proc) : proc

// ...

p2 := pause(p1)

a (potentially large) object undergoes a transformation pause and we get
its new value p2, leaving the old value p1 unaffected.

This is great for reasoning, but how do we implement this in C? We can:

(naively) allocate a new object for p2, leaving p1 unchanged, or

update the object in place: overwrite p1 with p2

. . . but this is only correct if the remainder of the program does
not depend on the overwritten value p1.

Olivier Delande (Prove & Run) Generating bare-metal C code Entropy 2019, 16/06/2019 4 / 9



Functional updates

In a pure language, updates are functional, e.g. in the program:

// A function pausing a process: takes the current value

// of the process and returns the new value

pause(p1 : proc) : proc

// ...

p2 := pause(p1)

a (potentially large) object undergoes a transformation pause and we get
its new value p2, leaving the old value p1 unaffected.
This is great for reasoning, but how do we implement this in C? We can:

(naively) allocate a new object for p2, leaving p1 unchanged, or

update the object in place: overwrite p1 with p2

. . . but this is only correct if the remainder of the program does
not depend on the overwritten value p1.

Olivier Delande (Prove & Run) Generating bare-metal C code Entropy 2019, 16/06/2019 4 / 9



Nested in-place updates

Sometimes the object we’d like to update in place lives somewhere inside a
data structure:

// An array of processes

type procs = proc[NR_PROCS]

Let’s pause the process at index i in some array procs1:

Functionally Imperatively (in place)

p1 := procs1[i] Take pointer to element (alias)
p2 := pause(p1) Update element in place
procs2 := procs1 with [i] = p2 Nothing to do

In the imperative program, pause overwrites (invalidates) both p1 and
procs1[i], but this is correct because we never read them afterwards.

Olivier Delande (Prove & Run) Generating bare-metal C code Entropy 2019, 16/06/2019 5 / 9



Our approach to safe in-place updates

We support live read-write references to overlapping objects (i.e., aliases)
in a controlled way: the program must not depend on the overwritten
contents.
We safely achieve this thanks to two static analyses:

1 A dependency analysis determines which parts of the value of a
variable will be needed in the future.

2 A points-to analysis tracks aliases.

Principle: it is safe to update an object in place if we do not depend on
the values of any of its potential aliases.

Olivier Delande (Prove & Run) Generating bare-metal C code Entropy 2019, 16/06/2019 6 / 9



Example

Let’s run the dependency and points-to analyses, and compile to C.

procs1

p1 := procs1[i]

p1 = &procs1[i];

procs1 except [i] p1 p17→procs1[i]

p2 := pause(p1)

pause(p1); p2 = p1;

procs1 except [i] p2 p27→procs1[i]

procs2 := procs1 with [i] = p2

procs2 = procs1;

procs2 procs27→procs1

Olivier Delande (Prove & Run) Generating bare-metal C code Entropy 2019, 16/06/2019 7 / 9



Example

Let’s run the dependency and points-to analyses, and compile to C.

procs1

p1 := procs1[i]

p1 = &procs1[i];

procs1 except [i] p1 p17→procs1[i]

p2 := pause(p1)

pause(p1); p2 = p1;

procs1 except [i] p2 p27→procs1[i]

procs2 := procs1 with [i] = p2

procs2 = procs1;

procs2

procs27→procs1

Olivier Delande (Prove & Run) Generating bare-metal C code Entropy 2019, 16/06/2019 7 / 9



Example

Let’s run the dependency and points-to analyses, and compile to C.

procs1

p1 := procs1[i]

p1 = &procs1[i];

procs1 except [i] p1 p17→procs1[i]

p2 := pause(p1)

pause(p1); p2 = p1;

procs1 except [i] p2

p27→procs1[i]

procs2 := procs1 with [i] = p2

procs2 = procs1;

procs2

procs27→procs1

Olivier Delande (Prove & Run) Generating bare-metal C code Entropy 2019, 16/06/2019 7 / 9



Example

Let’s run the dependency and points-to analyses, and compile to C.

procs1

p1 := procs1[i]

p1 = &procs1[i];

procs1 except [i] p1

p17→procs1[i]

p2 := pause(p1)

pause(p1); p2 = p1;

procs1 except [i] p2

p27→procs1[i]

procs2 := procs1 with [i] = p2

procs2 = procs1;

procs2

procs27→procs1

Olivier Delande (Prove & Run) Generating bare-metal C code Entropy 2019, 16/06/2019 7 / 9



Example

Let’s run the dependency and points-to analyses, and compile to C.

procs1

p1 := procs1[i]

p1 = &procs1[i];

procs1 except [i] p1

p17→procs1[i]

p2 := pause(p1)

pause(p1); p2 = p1;

procs1 except [i] p2

p27→procs1[i]

procs2 := procs1 with [i] = p2

procs2 = procs1;

procs2

procs27→procs1

Olivier Delande (Prove & Run) Generating bare-metal C code Entropy 2019, 16/06/2019 7 / 9



Example

Let’s run the dependency and points-to analyses, and compile to C.

procs1

p1 := procs1[i] p1 = &procs1[i];

procs1 except [i] p1 p17→procs1[i]

p2 := pause(p1)

pause(p1); p2 = p1;

procs1 except [i] p2

p27→procs1[i]

procs2 := procs1 with [i] = p2

procs2 = procs1;

procs2

procs27→procs1

Olivier Delande (Prove & Run) Generating bare-metal C code Entropy 2019, 16/06/2019 7 / 9



Example

Let’s run the dependency and points-to analyses, and compile to C.

procs1

p1 := procs1[i] p1 = &procs1[i];

procs1 except [i] p1 p17→procs1[i]

p2 := pause(p1) pause(p1); p2 = p1;

procs1 except [i] p2 p27→procs1[i]

procs2 := procs1 with [i] = p2

procs2 = procs1;

procs2

procs27→procs1

Olivier Delande (Prove & Run) Generating bare-metal C code Entropy 2019, 16/06/2019 7 / 9



Example

Let’s run the dependency and points-to analyses, and compile to C.

procs1

p1 := procs1[i] p1 = &procs1[i];

procs1 except [i] p1 p17→procs1[i]

p2 := pause(p1) pause(p1); p2 = p1;

procs1 except [i] p2 p27→procs1[i]

procs2 := procs1 with [i] = p2 procs2 = procs1;

procs2 procs27→procs1

Olivier Delande (Prove & Run) Generating bare-metal C code Entropy 2019, 16/06/2019 7 / 9



Summary

We have illustrated this approach on a common pattern: a
read-modify-write sequence.

This also works in more complex situations: nested updates, parallel
modifications of sibling objects, ill-parenthesized modifications, etc,
all of which occur in idiomatic code.

This comes at a cost: dependency and alias tracking, rather than
(just) typing.

The cost is moderate because the problem is local to each function.
Although annotations can be used to guide the generator, in practice
all the programmer has to do is specify which types must be updated
in place vs copied.

Olivier Delande (Prove & Run) Generating bare-metal C code Entropy 2019, 16/06/2019 8 / 9



Conclusion

When developing a large system like ProvenCore, most of the effort is
spent on the proof.

Choosing a language optimized for reasoning (e.g. without side
effects, with support for ghost code) makes development and
maintenance dramatically easier.

With reasonably few restrictions on the executable fragment of the
language, compilation techniques such as dataflow analysis work well
to derive an efficient implementation.

Olivier Delande (Prove & Run) Generating bare-metal C code Entropy 2019, 16/06/2019 9 / 9


