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Outline

● What is a capability-based computer?
● Our model of a “pointers to capabilities” translation
● What is a fully-abstraction translation?
● Our proof idea: ternary simulation
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A capability is an access token that gives permission to perform some 
operation on some resource.

load r1 ,  c4  



What is a capability-based computer?
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What is a capability computer?

 r1  Example of a memory 
instruction:

0xB1005..E

For a successful load, c4 needs to 
contain a valid “load 
capability” on a region 
containing 0xB1005..E
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 c4  

Is  c4  a load 
capability?

load r1 ,  c4  



● The loader places a capability (e.g., 
in c0) that authorizes memory 
operations on all of the 
program’s data segment.

● The compiler creates 
sub-capabilities as needed and 
uses them for the corresponding 
instructions.

Role of compiler and loader in a capability computer
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 c0  

Program’s 
data 

segment

load  r1 ,  c4  
store ...  

lim  c4, c0, r3, r2 

 c4  



Our model of a “pointers-to-capabilities” 
translation
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Example program and its translation
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#include “networking.h”

iobuffer [512];
static secret;
main() {
  iobuffer[42] = 4242;
  send_rcv(&iobuffer);
  handle_secret();
}
handle_secret() { … }

#include “networking.h”

data_segment_size: 513

main() {
  inc(ddc, 42) = 4242;
  send_rcv(lim(ddc, 0, 512));
  handle_secret();
}
handle_secret() { … }

Spatially-safe semantics for pointers Secure implementation of this semantics



What is a fully-abstract translation?
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What is a fully-abstract translation?

∀P1 P2

∀CS. CS[P1] ≈ CS[P2]
⇐⇒ 

∀CT. CT[P1↓] ≈ CT[P2↓]

P1, P2: Two source programs
P1↓, P2↓: Translated versions of P1 and P2
CS: Source context
CT: Target context
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The ⇒ direction is 
called preservation 

of contextual 
equivalence



How to prove the ⇒ direction? Use trace equivalence (1)

∀P1 P2

∀CS. CS[P1] ≈ CS[P2]
⇒ 

∀CT. CT[P1↓] ≈ CT[P2↓]

Design traces that record all “observable behavior”. Then instead prove:
∀P1 P2

traces(P1) = traces(P2)
⇒ 

traces(P1↓) = traces(P2↓) 10

The traces of a 
program are all its 

possible interactions 
with any context



How to prove the ⇒ direction? Use trace equivalence (2)

∀P1 P2

traces(P1) = traces(P2)
⇒ 

traces(P1↓) = traces(P2↓)

Show that for any program, its “traces” set does not change after translation
∀P. traces(P) = traces(P↓)

i.e., need to show
∀P t. t ∈ traces(P) ⇐⇒ t ∈ traces(P↓)
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Ternary simulation to prove the theorem:
∀P t. t ∈ traces(P) ⇐ t ∈ traces(P↓)
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Example to explain the use of a ternary cross-language 
simulation relation
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send_rcv([....,4242,...]) return([0,.....,0])

send_rcv([....,4242,...]) return([0,.....,0])

send_rcv([....,4242,...]) return([0,.....,0])

Cobtained[P↓]

Cemulating[P]

Cemulating↓
[P↓]

≈ ~ ≈Lock-step 
simulation

Option 
simulation

~

Emulation 
invariants

Forward 
simulation

Backward 
simulation

Strengthening

....

....

....



Conclusion:
● Model a pointers-to-capabilities translation.
● Prove that it is fully abstract by using a 

ternary cross-language simulation for the 
proof of: 
∀P t. t ∈ traces(P) ⇐ t ∈ traces(P↓).

Thank you
14


