
A Fully-Abstract Translation of
Pointers to Capabilities

Akram El-Korashy, Stelios Tsampas, Marco Patrignani,
 Dominique Devriese, Deepak Garg, Frank Piessens
MPI-SWS, KU-Leuven, CISPA-Saarland & Stanford

1

Outline

● What is a capability-based computer?
● Our model of a “pointers to capabilities” translation
● What is a fully-abstraction translation?
● Our proof idea: ternary simulation

2

A capability is an access token that gives permission to perform some
operation on some resource.

load r1 , c4

What is a capability-based computer?

3

What is a capability computer?

 r1 Example of a memory
instruction:

0xB1005..E

For a successful load, c4 needs to
contain a valid “load
capability” on a region
containing 0xB1005..E

4

 c4

Is c4 a load
capability?

load r1 , c4

● The loader places a capability (e.g.,
in c0) that authorizes memory
operations on all of the
program’s data segment.

● The compiler creates
sub-capabilities as needed and
uses them for the corresponding
instructions.

Role of compiler and loader in a capability computer

5

 c0

Program’s
data

segment

load r1 , c4
store ...

lim c4, c0, r3, r2

 c4

Our model of a “pointers-to-capabilities”
translation

6

Example program and its translation

7

#include “networking.h”

iobuffer [512];
static secret;
main() {
 iobuffer[42] = 4242;
 send_rcv(&iobuffer);
 handle_secret();
}
handle_secret() { … }

#include “networking.h”

data_segment_size: 513

main() {
 inc(ddc, 42) = 4242;
 send_rcv(lim(ddc, 0, 512));
 handle_secret();
}
handle_secret() { … }

Spatially-safe semantics for pointers Secure implementation of this semantics

What is a fully-abstract translation?

8

What is a fully-abstract translation?

∀P1 P2

∀CS. CS[P1] ≈ CS[P2]
⇐⇒

∀CT. CT[P1↓] ≈ CT[P2↓]

P1, P2: Two source programs
P1↓, P2↓: Translated versions of P1 and P2
CS: Source context
CT: Target context

9

The ⇒ direction is
called preservation

of contextual
equivalence

How to prove the ⇒ direction? Use trace equivalence (1)

∀P1 P2

∀CS. CS[P1] ≈ CS[P2]
⇒

∀CT. CT[P1↓] ≈ CT[P2↓]

Design traces that record all “observable behavior”. Then instead prove:
∀P1 P2

traces(P1) = traces(P2)
⇒

traces(P1↓) = traces(P2↓) 10

The traces of a
program are all its

possible interactions
with any context

How to prove the ⇒ direction? Use trace equivalence (2)

∀P1 P2

traces(P1) = traces(P2)
⇒

traces(P1↓) = traces(P2↓)

Show that for any program, its “traces” set does not change after translation
∀P. traces(P) = traces(P↓)

i.e., need to show
∀P t. t ∈ traces(P) ⇐⇒ t ∈ traces(P↓)

11

Ternary simulation to prove the theorem:
∀P t. t ∈ traces(P) ⇐ t ∈ traces(P↓)

12

Example to explain the use of a ternary cross-language
simulation relation

13

send_rcv([....,4242,...]) return([0,.....,0])

send_rcv([....,4242,...]) return([0,.....,0])

send_rcv([....,4242,...]) return([0,.....,0])

Cobtained[P↓]

Cemulating[P]

Cemulating↓
[P↓]

≈ ~ ≈Lock-step
simulation

Option
simulation

~

Emulation
invariants

Forward
simulation

Backward
simulation

Strengthening

....

....

....

Conclusion:
● Model a pointers-to-capabilities translation.
● Prove that it is fully abstract by using a

ternary cross-language simulation for the
proof of:
∀P t. t ∈ traces(P) ⇐ t ∈ traces(P↓).

Thank you
14

