A Fully-Abstract Translation of
Pointers to Capabilities

Akram El-Korashy, Stelios Tsampas, Marco Patrignani,

Dominique Devriese, Deepak Garg, Frank Piessens
MPI-SWS, KU-Leuven, CISPA-Saarland & Stanford

Outline

e What is a capability-based computer?

[e (Our model of a “pointers to capabilities” translation]
e What is a fully-abstraction translation?
| o Our proof idea: ternary simulation]

A bility is an access token that gives permission to perform some
operation pn some resource.

yaN

Load SN

What is a capability-based computer?

What is a capability computer?

()

I\

OxB100O5..E

Is W a load

capability?

Example of a memory
instruction:

Load SN

For a successful load, ¢4 needs to
contain a valid “load
capability” on a region
containing ®©xB1005. .E

Role of compiler and loader in a capability computer

o ()
. ‘v

o The loader places a capability (e.g., . Program’s
in ¢0) Fhat authorizes memory _caf Sedgamteant
operations on all of the | cols ————
program’s data segment. B

o The compiler creates -)
sub-capabilities as needed and im

uses them for the corresponding load
instructions. store [

Our model of a “pointers-to-capabilities”

translation

Example program and its translation

#include “networking.h” #include “networking.h”
jobuffer [512]; data_segment_size: 513
static secret;

main() { main() {

inc(ddc, 42) = 4242;
send_rcv(lim(ddc, 0, 512));
handle_secret();

iobuffer[42] = 4242;
send_rcv (&iobuffer);
handle_secret();
} ¥
handle_secret() { .. } handle_secret() { .. }

[Spatially-safe semantics for pointers][Secure implementation of this semantics]

What is a fully-abstract translation?

What is a fully-abstract translation?

NI VP, P
(" The = direction is 1oz
called preservation vc.. ¢ [P] = C[P,]
of contextual =
. equivalence @) VC.. C.[P] = C[P,v]

P, P Two source programs
P.v, P_v: Translated versionsof P and P,
C. Source context

S

C.: Target context

How to prove the = direction? Use trace equivalence (1)

VP, P

1 2

Q

VCS. CS[Pl]
=5
VC.. CT[P1¢] = CT[P2¢]

T

c.[P,]

Design traces that record all “observable behavior”. Then instead prove:

(Thetracesofa VP, P,

program are aII_|ts traces(P,) = traces(P,)
possible interactions =
__With any context /) traces(Pv) =

traces(P,v)

How to prove the = direction? Use trace equivalence (2)

VP, P

1 2

traces(P,) = traces(P,)

=

traces(P_v) traces(P,v)

Show that for any program, its “traces” set does not change after translation
VP. traces(P) = traces(Pv)

1.e., need to show
VP t. t € traces(P) & t € traces(Py)

Ternary simulation to prove the theorem:

VP t. t € traces(P) ¢ t € traces(Pvy)

Example to explain the use of a ternary cross-language
simulation relation

I send_rcv([...4242,.]) ! I return([0,...0)
Cemulating[P] "___(I___)J "___(-)_
Backward EmulationI Lorward
simulation invariants simulation
emulating? send_rov((}. 4242,..]) ! - retun([0...0) N ...
[Py] TR T T
' Strengthening
~ Lock-step ~ - =,
simulation / ;

Cobtai ned [Pv] send_rev(]....,

return([0,...0) |/ ...

13

Conclusion:

e Model a pointers-to-capabilities translation.

e Prove that it is fully abstract by using a
ternary cross-language simulation for the
proof of:
VP t. t € traces(P) ¢ t € traces(Pvy).

Thank you

