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I. INTRODUCTION

Speculative execution avoids expensive pipeline stalls by
predicting the outcome of branching (and other) decisions,
and by speculatively executing the corresponding instructions.
If a prediction turns out to be wrong, the processor aborts
the speculative execution and rolls back the effect of the
speculatively executed instructions on the architectural (ISA)
state, which consists of registers, flags, and main memory.

However, the speculative execution’s effect on the microar-
chitectural state, which comprises the content of the cache,
is not (or only partially) rolled back. This side effect can
leak information about the speculatively accessed data and
thus violate confidentiality. The family of SPECTRE attacks [1]
demonstrates that this vulnerability affects all modern general-
purpose processors and poses a serious threat for platforms
with multiple tenants.

Since the advent of SPECTRE, a number of countermea-
sures have been proposed and deployed. At the software-
level, these include, for instance, the insertion of serializing
instructions [2], the use of branchless bounds checks [3], and
speculative load hardening [4]. Several compilers support the
automated insertion of these countermeasures during compi-
lation [4]–[6], and the first static analyses to help identify
vulnerable code patterns are emerging [7].

However, we still lack a precise characterization of security
against speculative execution attacks. Such a characterization
is a prerequisite for reasoning about the effectiveness of
countermeasures, and for making principled decisions about
their placement. It would enable one, for example, to identify
cases where countermeasures do not prevent all attacks, or
where they are unnecessary.

Our Approach: We develop a novel, principled approach
for detecting information flows introduced by speculative
execution, and for reasoning about software defenses against
SPECTRE-style attacks. Our approach is backed by a semantic
notion of security against speculative execution attacks, and
it comes with an algorithm, based on symbolic execution, for
proving the absence of speculative leaks.

Defining Security: The foundation of our approach is spec-
ulative non-interference, a novel semantic notion of secu-
rity against speculative execution attacks. Speculative non-
interference is based on comparing a program with respect
to two different semantics:

• The first is a standard, non-speculative semantics. We use
this semantics as a proxy for the intended program behavior.

• The second is a novel, speculative semantics that can
follow mispredicted branches for a bounded number of steps
before backtracking. We use this semantics to capture the
effect of speculatively executed instructions.

In a nutshell, speculative non-interference requires
that speculatively executed instructions do not leak more
information into the microarchitectural state than what the
intended behavior does, i.e., than what is leaked by the
standard, non-speculative semantics.

To capture “leakage into the microarchitectural state”, we
consider an observer of the program execution that sees the
locations of memory accesses and jump targets. This observer
model is commonly used for characterizing “side-channel
free” or “constant-time” code [8] in the absence of detailed
models of the microarchitecture.

Under this observer model, an adversary may distinguish
two initial program states if they yield different traces of mem-
ory locations and jump targets. Speculative non-interference
(SNI) requires that two initial program states can only be dis-
tinguished under the speculative semantics if they can also be
distinguished under the standard, non-speculative semantics.
Concretely, SNI is a variant of non-interference where the
non-speculative semantics specifies what a program, executed
under the speculative semantics, is allowed to leak.

The speculative semantics, and hence SNI, depends on the
decisions taken by a branch predictor. We show that one can
abstract from the specific predictor by considering a worst-case
predictor that mispredicts every branching decision. SNI w.r.t.
this worst-case predictor implies SNI w.r.t. a large class of
real-world branch predictors, without introducing false alarms.

Checking Speculative Non-Interference: We propose SPEC-
TECTOR, an algorithm to automatically prove that programs
satisfy SNI. Given a program p, SPECTECTOR uses symbolic
execution with respect to the speculative semantics and the
worst-case branch predictor to derive a concise representation
of the traces of memory accesses and jump targets during
execution along all possible program paths.

Based on this representation, SPECTECTOR creates an SMT
formula that captures that, whenever two initial program states
produce the same memory access patterns in the standard
semantics, they also produce the same access patterns in
the speculative semantics. Validity of this formula for each
program path implies speculative noninterference.

Case studies: We implement a prototype of SPECTECTOR,
with a front end for parsing (a subset of) x86 assembly and
the Z3 SMT solver as a back end for solving SMT formulas.
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1 if (y < size)
2 temp &= B[A[y] * 512];

Fig. 1. SPECTRE variant 1 - C code

1 mov size, %rax
2 mov y, %rbx
3 cmp %rbx, %rax
4 jbe END
5 mov A(%rbx), %rax
6 shl $9, %rax
7 mov B(%rax), %rax
8 and %rax, temp

Fig. 2. SPECTRE variant 1 - Assembly code

We perform two case studies where we evaluate the precision
and scalability of SPECTECTOR.

• For evaluating precision, we analyze the 15 variants of
SPECTRE v1 by Kocher [9]. We create a corpus of 240
microbenchmarks by compiling the 15 programs with the
CLANG, INTEL ICC, and Microsoft VISUAL C++ compilers,
using different levels of optimization and protection against
SPECTRE. Using SPECTECTOR, we successfully (1) detect
all leaks pointed out in [9], (2) detect novel, subtle leaks
that are out of scope of existing approaches that check for
known vulnerable code patterns [7], and (3) identify cases
where compilers unnecessarily inject countermeasures, i.e.,
opportunities for optimization without sacrificing security.

• For evaluating scalability, we apply SPECTECTOR to
the codebase of the Xen Project Hypervisor. Our evaluation
indicates that the cost of checking speculative non-interference
is comparable to that of discovering symbolic paths, which
shows that our approach does not exhibit bottlenecks beyond
those inherited by symbolic execution.

Scope: We focus on leaks introduced by speculatively
executed instructions resulting from mispredicted branch out-
comes, such as those exploited in SPECTRE v1 [1]. We discuss
our formal model’s validity in [10].

Summary of contributions: Our contributions are both theo-
retical and practical. On the theoretical side, we present spec-
ulative non-interference, the first semantic notion of security
against speculative execution attacks. On the practical side, we
develop SPECTECTOR, an automated technique for detecting
speculative leaks (or prove their absence), and we use it to
detect subtle leaks – and optimization opportunities – in the
way compilers inject SPECTRE countermeasures.

Additional material: This paper is a short version of [10].
SPECTECTOR and the full paper describing our approach are
available at https://spectector.github.io.

II. ILLUSTRATIVE EXAMPLE

To illustrate our approach, we show how SPECTECTOR
applies to the SPECTRE v1 example [1] shown in Figure 1.

Spectre v1: The program checks whether the index stored
in variable y is less than the size of the array A, stored in
variable size. If that is the case, the program retrieves A[y],

amplifies it with a multiple (here: 512) of the cache line size,
and uses the result as an address for accessing the array B.

If size is not cached, evaluating the branch condition re-
quires traditional processors to wait until size is fetched from
main memory. Modern processors instead speculate on the
condition’s outcome and continue the computation. Hence, the
memory accesses in line 2 may be executed even if y ≥ size.

When size becomes available, the processor checks
whether the speculated branch is the correct one. If it is not, it
rolls back the architectural (i.e. ISA) state’s changes and exe-
cutes the correct branch. However, the speculatively executed
memory accesses leave a footprint in the microarchitectural
state, in particular in the cache, which enables an adversary
to retrieve A[y], even for y ≥ size, by probing the array B.

Detecting Leaks with SPECTECTOR: SPECTECTOR auto-
matically detects leaks introduced by speculatively executed
instructions, or proves their absence. Specifically, SPECTEC-
TOR detects a leak whenever executing the program under the
speculative semantics, which captures that the execution can
go down a mispredicted path for a bounded number of steps,
leaks more information into the microarchitectural state than
executing the program under a non-speculative semantics.

To illustrate how SPECTECTOR operates, we consider the
x86 assembly1 translation of Figure 1’s program (cf. Figure 2).

SPECTECTOR performs symbolic execution with respect to
the speculative semantics to derive a concise representation of
the concrete traces of memory accesses and program counter
values along each path of the program. These symbolic traces
capture the program’s effect on the microarchitectural state.

During speculative execution, the speculatively executed
parts are determined by the predictions of the branch predictor.
As we prove in [10], leakage due to speculative execution is
maximized under a branch predictor that mispredicts every
branch. The code in Figure 2 yields two symbolic traces w.r.t.
the speculative semantics that mispredicts every branch:2

start · rollback · τ when y < size (1)

start · τ · rollback when y ≥ size (2)

where τ = load (A + y) · load (B + A[y] * 512). Here,
the argument of load is visible to the observer, while start
and rollback denote the start and the end of a misspeculated
execution. The traces of the non-speculative semantics are
obtained from those of the speculative semantics by removing
all observations in between start and rollback.

Trace 1 shows that whenever y is in bounds (i.e., y < size)
the observations of the speculative semantics and the non-
speculative semantics coincide (i.e. they are both τ ). In con-
trast, Trace 2 shows that whenever y ≥ size, the speculative
execution generates observations τ that depend on A[y] whose
value is not visible in the non-speculative execution. This is
flagged as a leak by SPECTECTOR.

1We use a simplified AT&T syntax without operand sizes
2For simplicity of presentation, the example traces capture only loads but

not the program counter.
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Proving Security with SPECTECTOR: The CLANG 7.0.0
C++ compiler implements a countermeasure, called specu-
lative load hardening [4], that applies conditional masks to
addresses to prevent leaks into the microarchitectural state.
Figure 3 depicts the protected output of CLANG on the
program from Figure 1.

1 mov size, %rax
2 mov y, %rbx
3 mov $0, %rdx
4 cmp %rbx, %rax
5 jbe END
6 cmovbe $-1, %rdx
7 mov A(%rbx), %rax
8 shl $9, %rax
9 or %rdx, %rax

10 mov B(%rax), %rax
11 or %rdx, %rax
12 and %rax, temp

Fig. 3. SPECTRE variant 1 - Assembly code with speculative load hardening.
CLANG inserted instructions 3, 6, 9, and 11.

The symbolic execution of the speculative semantics pro-
duces, as before, Trace 1 and Trace 2, but with

τ = load (A+ y) · load (B+ (A[y] * 512) |mask),

where mask = ite(y < size,0x0,0xFF..FF) corresponds
to the conditional move in line 6 and | is a bitwise-or operator.
Here, ite(y < size,0x0,0xFF..FF) is a symbolic if-
then-else expression evaluating to 0x0 if y < size and to
0xFF..FF otherwise.

The analysis of Trace 1 is as before. For Trace 2, however,
SPECTECTOR determines (via a query to Z3 [11]) that, for all
y ≥ size there is exactly one observation that the adversary
can make during the speculative execution, namely load (A+
y) · load (B + 0xFF..FF), from which it concludes that
no information leaks into the microarchitectural state, i.e., the
countermeasure is effective in securing the program.

III. CASE STUDY: COMPILER COUNTERMEASURES

Here, we report the results of using SPECTECTOR to analyze
the security of compiler-level countermeasures on 15 variants
of SPECTRE v1 [9]. We refer the reader to [10] for our case
study evaluating SPECTECTOR’s scalability.

A. Experimental Setup

For our analysis, we rely on three state-of-the-art com-
pilers: Microsoft VISUAL C++ versions v19.15.26732.1 and
v19.20.27317.96, Intel ICC v19.0.0.117, and CLANG v7.0.0.

We compile the programs using two different optimization
levels (-O0 and -O2) and three mitigation levels: (a) UNP:
we compile without any SPECTRE mitigations. (b) FEN: we
compile with automated injection of speculation barriers.3

(c) SLH: we compile using speculative load hardening.4

3Fences are supported by CLANG with the flag -x86-speculative-
load-hardening-lfence, by ICC with -mconditional-
branch=all-fix, and by VISUAL C++ with /Qspectre.

4Speculative load hardening is supported by CLANG with the flag
-x86-speculative-load-hardening.

Compiling each of the 15 examples from [9] with each of
the 3 compilers, each of the 2 optimization levels, and each of
the 2-3 mitigation levels, yields a corpus of 240 x64 assembly
programs.5 For each program, we specify a security policy
that flags as “low” all registers and memory locations that can
either be controlled by the adversary or can be assumed to
be public. This includes variables y and size, and the base
addresses of the arrays A and B as well as the stack pointer.

B. Experimental Results

Figure 4 depicts the results of applying SPECTECTOR to the
240 examples. We highlight the following findings:

• SPECTECTOR detects the speculative leaks in almost
all unprotected programs, for all compilers (see the UNP
columns). The exception is Example #8, which uses a con-
ditional expression instead of the if statement of Figure 1:

1 temp &= B[A[y<size?(y+1):0]*512];

At optimization level -O0, this is translated to a (vulnerable)
branch instruction by all compilers, and at level -O2 to a (safe)
conditional move, thus closing the leak.

• The CLANG and Intel ICC compilers defensively insert
fences after each branch instruction, and SPECTECTOR can
prove security for all cases (see the FEN columns for CLANG
and ICC). In Example #8 with options -O2 and FEN, ICC
inserts an lfence instruction, even though the baseline relies
on a conditional move, see line 10 below. This lfence is
unnecessary according to our semantics, but may close leaks
on processors that speculate over conditional moves.

1 mov y, %rdi
2 lea 1(%rdi), %rdx
3 mov size, %rax
4 xor %rcx, %rcx
5 cmp %rax, %rdi
6 cmovb %rdx, %rcx
7 mov temp, %r8b
8 mov A(%rcx), %rsi
9 shl $9, %rsi

10 lfence
11 and B(%rsi), %r8b
12 mov %r8b, temp

• For the VISUAL C++ compiler, SPECTECTOR
automatically detects all leaks pointed out in [9] (see
the FEN 19.15 -O2 column for VCC). Our analysis differs
from Kocher’s only on Example #8, where the compiler
v19.15.26732.1 introduces a safe conditional move, as
explained above. Moreover, without compiler optimizations
(which is not considered in [9]), SPECTECTOR establishes the
security of Examples 3 and 5 (see the FEN 19.15 -O0 column).
The latest VCC compiler additionally mitigates the leaks in
Examples #4, #12, and #14 (see the FEN 19.20 column).

• SPECTECTOR can prove the security of speculative load
hardening in Clang (see the SLH column for CLANG), except
for Example #10 with -O2 and Example #15 with -O0.

5The programs are available at https://spectector.github.io.
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Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 ◦ ◦ •◦ •◦ •◦ •◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ •◦ •◦
02 ◦ ◦ •◦ •◦ •◦ •◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ •◦ •◦
03 ◦ ◦ •◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ •◦ •◦
04 ◦ ◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ •◦ •◦
05 ◦ ◦ •◦ ◦ •◦ ◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ •◦ •◦
06 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ •◦ •◦
07 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ •◦ •◦
08 ◦ •◦ ◦ •◦ ◦ •◦ ◦ •◦ •◦ •◦ ◦ •◦ •◦ •◦ •◦ •◦
09 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ •◦ •◦
10 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ •◦ ◦
11 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ •◦ •◦
12 ◦ ◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ •◦ •◦
13 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ •◦ •◦
14 ◦ ◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ •◦ •◦
15 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •◦ •◦ ◦ ◦ •◦ •◦ ◦ •◦

Fig. 4. Analysis of Kocher’s examples [9] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
◦ denotes that SPECTECTOR detects a speculative leak, whereas •◦ indicates that SPECTECTOR proves the program secure.

Example 10 with Speculative Load Hardening: Example
#10 differs from Figure 1 in that it leaks sensitive information
into the microarchitectural state by conditionally reading the
content of B[0], depending on the value of A[y].

1 if (y < size)
2 if (A[y] == k)
3 temp &= B[0];

SPECTECTOR proves the security of the program produced
with CLANG -O0, and speculative load hardening.

However, at optimization level -O2, CLANG outputs the
following code that SPECTECTOR reports as insecure.

1 mov size, %rdx
2 mov y, %rbx
3 mov $0, %rax
4 cmp %rbx, %rdx
5 jbe END
6 cmovbe $-1, %rax
7 or %rax, %rbx
8 mov k, %rcx
9 cmp %rcx, A(%rbx)

10 jne END
11 cmovne $-1, %rax
12 mov B, %rcx
13 and %rcx, temp
14 jmp END

The reason for this is that CLANG masks only the register
%rbx that contains the index of the memory access A[y],
cf. lines 6–7. However, it does not mask the value that
is read from A[y]. As a result, the comparison at line 9
speculatively leaks (via the jump target) whether the content of
A[0xFF...FF] is k. SPECTECTOR detects this subtle leak
and flags a violation of speculative noninterference.

While this example nicely illustrates the scope of SPECTEC-
TOR, it is likely not a problem in practice. First, the adversary
can only determine one bit of information about the content of
a fixed memory location. Second, the leak may be mitigated
by how data dependencies are handled in modern out-of-order
CPUs. Specifically, the conditional move in line 6 relies on
the comparison in line 4. If executing the conditional move
effectively terminates speculation, the leak is spurious.
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