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ProvenCore

ProvenCore is very large verification project

→ 17000 lines of actual code
→ 380000 lines of specs and lemmas across 720+ modules and 4

refinement levels
→ 180000 hints to prove 29000 VCs

in an interactive proof system, with limited manpower

how do we achieve and maintain such a large-scale effort?
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Scalable approach

proof by refinement allows parallel work

we designed our own language and IDE ProvenTools

→ Smart is a unique language for code & specs
→ C generator supports ghost code, and the linear displicine it enforces is

light and natural
→ automated and assisted maintenance of proofs
→ static analyses for the framing problem

O. F. Andreescu, T. Jensen, S. Lescuyer, B. Montagu. Inferring frame
conditions with static correlation analysis. PACMPL 3(POPL):
47:1-47:29 (2019).

→ makes strict separation of code and specs/proofs possible
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Obfuscating code with specs (ADA/Spark2014)
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Obfuscating code with specs (Java/VeriFast)
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Obfuscating code with specs (Why3)
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Separation of code and specifications

→ better readability

→ simpler dependencies (important for CC evaluation)

→ separation of concerns

How to achieve separation?

→ do not use Hoare-style contracts

→ how to get rid of loop invariants? (without getting rid of loops)
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becomes a single separate lemma
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Inductive loop invariants

loop invariants hold at every iteration

inductive loop properties are preserved by the loop

→ reasoning about a loop means finding inductive loop invariants

Let I be the set of inductive loop invariants

the conjunction of two inductive invariants is an inductive invariant

(I,⊇) form a lattice, its join operation is the conjunction operator ∧
its bottom element is True, and its maximum element

∧
I∈I I is what

we call the most general inductive invariant (MGI)
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Generating the MGI

→ MGI can be defined as the inductive closure of the relation which
contains the loop initialization and which is closed by applying an
iteration of the loop body
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MGIs in practice

this works with loops in sequence or even nested loops

one can specify the frame of the MGI, i.e. the variables that it should
track

→ tracking less variables means the MGI is not so general anymore, but
applies to more loops

MGIs allow sharing proofs between “similar” loops

→ if the MGI of some loop L is an invariant of some loop L′, all
invariants of L are invariants of L′

MGI generation need not be trusted

we use a similar trick to delay termination proofs for recursive
predicates or internal loops
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Conclusion

good tooling is key to large verification project like ProvenCore

ProvenTools is designed to meet our ends and make the project
manageable

we value separation of code and specs

→ original way of dealing with loop reasoning
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