
Smart & ProvenTools
Proof Techniques That Scale

Stéphane Lescuyer

Prove & Run

Entropy 2019, Stockholm, 16/06/2019

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 1 / 12



ProvenCore

ProvenCore is very large verification project

→ 17000 lines of actual code
→ 380000 lines of specs and lemmas across 720+ modules and 4

refinement levels
→ 180000 hints to prove 29000 VCs

in an interactive proof system, with limited manpower

how do we achieve and maintain such a large-scale effort?

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 2 / 12



ProvenCore

ProvenCore is very large verification project

→ 17000 lines of actual code
→ 380000 lines of specs and lemmas across 720+ modules and 4

refinement levels
→ 180000 hints to prove 29000 VCs

in an interactive proof system, with limited manpower

how do we achieve and maintain such a large-scale effort?

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 2 / 12



ProvenCore

ProvenCore is very large verification project

→ 17000 lines of actual code
→ 380000 lines of specs and lemmas across 720+ modules and 4

refinement levels
→ 180000 hints to prove 29000 VCs

in an interactive proof system, with limited manpower

how do we achieve and maintain such a large-scale effort?

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 2 / 12



Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 3 / 12



Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 3 / 12



Scalable approach

proof by refinement allows parallel work

we designed our own language and IDE ProvenTools

→ Smart is a unique language for code & specs
→ C generator supports ghost code, and the linear displicine it enforces is

light and natural
→ automated and assisted maintenance of proofs
→ static analyses for the framing problem

O. F. Andreescu, T. Jensen, S. Lescuyer, B. Montagu. Inferring frame
conditions with static correlation analysis. PACMPL 3(POPL):
47:1-47:29 (2019).

→ makes strict separation of code and specs/proofs possible

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 4 / 12



Scalable approach

proof by refinement allows parallel work

we designed our own language and IDE ProvenTools

→ Smart is a unique language for code & specs
→ C generator supports ghost code, and the linear displicine it enforces is

light and natural
→ automated and assisted maintenance of proofs
→ static analyses for the framing problem

O. F. Andreescu, T. Jensen, S. Lescuyer, B. Montagu. Inferring frame
conditions with static correlation analysis. PACMPL 3(POPL):
47:1-47:29 (2019).

→ makes strict separation of code and specs/proofs possible

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 4 / 12



Scalable approach

proof by refinement allows parallel work

we designed our own language and IDE ProvenTools

→ Smart is a unique language for code & specs

→ C generator supports ghost code, and the linear displicine it enforces is
light and natural

→ automated and assisted maintenance of proofs
→ static analyses for the framing problem

O. F. Andreescu, T. Jensen, S. Lescuyer, B. Montagu. Inferring frame
conditions with static correlation analysis. PACMPL 3(POPL):
47:1-47:29 (2019).

→ makes strict separation of code and specs/proofs possible

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 4 / 12



Scalable approach

proof by refinement allows parallel work

we designed our own language and IDE ProvenTools

→ Smart is a unique language for code & specs
→ C generator supports ghost code, and the linear displicine it enforces is

light and natural

→ automated and assisted maintenance of proofs
→ static analyses for the framing problem

O. F. Andreescu, T. Jensen, S. Lescuyer, B. Montagu. Inferring frame
conditions with static correlation analysis. PACMPL 3(POPL):
47:1-47:29 (2019).

→ makes strict separation of code and specs/proofs possible

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 4 / 12



Scalable approach

proof by refinement allows parallel work

we designed our own language and IDE ProvenTools

→ Smart is a unique language for code & specs
→ C generator supports ghost code, and the linear displicine it enforces is

light and natural
→ automated and assisted maintenance of proofs

→ static analyses for the framing problem
O. F. Andreescu, T. Jensen, S. Lescuyer, B. Montagu. Inferring frame
conditions with static correlation analysis. PACMPL 3(POPL):
47:1-47:29 (2019).

→ makes strict separation of code and specs/proofs possible

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 4 / 12



Scalable approach

proof by refinement allows parallel work

we designed our own language and IDE ProvenTools

→ Smart is a unique language for code & specs
→ C generator supports ghost code, and the linear displicine it enforces is

light and natural
→ automated and assisted maintenance of proofs
→ static analyses for the framing problem

O. F. Andreescu, T. Jensen, S. Lescuyer, B. Montagu. Inferring frame
conditions with static correlation analysis. PACMPL 3(POPL):
47:1-47:29 (2019).

→ makes strict separation of code and specs/proofs possible

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 4 / 12



Scalable approach

proof by refinement allows parallel work

we designed our own language and IDE ProvenTools

→ Smart is a unique language for code & specs
→ C generator supports ghost code, and the linear displicine it enforces is

light and natural
→ automated and assisted maintenance of proofs
→ static analyses for the framing problem

O. F. Andreescu, T. Jensen, S. Lescuyer, B. Montagu. Inferring frame
conditions with static correlation analysis. PACMPL 3(POPL):
47:1-47:29 (2019).

→ makes strict separation of code and specs/proofs possible

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 4 / 12



Obfuscating code with specs (ADA/Spark2014)

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 5 / 12



Obfuscating code with specs (Java/VeriFast)

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 6 / 12



Obfuscating code with specs (Why3)

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 7 / 12



Separation of code and specifications

→ better readability

→ simpler dependencies (important for CC evaluation)

→ separation of concerns

How to achieve separation?

→ do not use Hoare-style contracts

→ how to get rid of loop invariants? (without getting rid of loops)

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 8 / 12



Separation of code and specifications

→ better readability

→ simpler dependencies (important for CC evaluation)

→ separation of concerns

How to achieve separation?

→ do not use Hoare-style contracts

{P} f {Q}

becomes a single separate lemma

P → f → Q

→ how to get rid of loop invariants? (without getting rid of loops)

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 8 / 12



Separation of code and specifications

→ better readability

→ simpler dependencies (important for CC evaluation)

→ separation of concerns

How to achieve separation?

→ do not use Hoare-style contracts

{P1 ∧ P2} f {Q1 ∧ Q2}

becomes a single separate lemma

P1→ P2→ f → Q1 ∧ Q2

→ how to get rid of loop invariants? (without getting rid of loops)

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 8 / 12



Separation of code and specifications

→ better readability
→ simpler dependencies (important for CC evaluation)
→ separation of concerns

How to achieve separation?

→ do not use Hoare-style contracts

{P1 ∧ P2} f {Q1 ∧ Q2}

becomes two separate lemmas

P1→ P2→ f → Q1

P1→ P2→ f → Q2

→ how to get rid of loop invariants? (without getting rid of loops)

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 8 / 12



Separation of code and specifications

→ better readability
→ simpler dependencies (important for CC evaluation)
→ separation of concerns

How to achieve separation?

→ do not use Hoare-style contracts

{P1 ∧ P2} f {Q1 ∧ Q2}

becomes two separate lemmas

P1→ f → Q1

P2→ f → Q2

→ how to get rid of loop invariants? (without getting rid of loops)

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 8 / 12



Separation of code and specifications

→ better readability
→ simpler dependencies (important for CC evaluation)
→ separation of concerns

How to achieve separation?

→ do not use Hoare-style contracts

{P1 ∧ P2} f {Q1 ∧ Q2}

becomes two separate lemmas

P1→ f → Q1

P2→ f → Q2

→ how to get rid of loop invariants? (without getting rid of loops)

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 8 / 12



Inductive loop invariants

loop invariants hold at every iteration

inductive loop properties are preserved by the loop

→ reasoning about a loop means finding inductive loop invariants

Let I be the set of inductive loop invariants

the conjunction of two inductive invariants is an inductive invariant

(I,⊇) form a lattice, its join operation is the conjunction operator ∧
its bottom element is True, and its maximum element

∧
I∈I I is what

we call the most general inductive invariant (MGI)

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 9 / 12



Inductive loop invariants

loop invariants hold at every iteration

inductive loop properties are preserved by the loop

→ reasoning about a loop means finding inductive loop invariants

Let I be the set of inductive loop invariants

the conjunction of two inductive invariants is an inductive invariant

(I,⊇) form a lattice, its join operation is the conjunction operator ∧
its bottom element is True, and its maximum element

∧
I∈I I is what

we call the most general inductive invariant (MGI)

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 9 / 12



Generating the MGI

→ MGI can be defined as the inductive closure of the relation which
contains the loop initialization and which is closed by applying an
iteration of the loop body

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 10 / 12



Generating the MGI

→ MGI can be defined as the inductive closure of the relation which
contains the loop initialization and which is closed by applying an
iteration of the loop body

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 10 / 12



Generating the MGI

→ MGI can be defined as the inductive closure of the relation which
contains the loop initialization and which is closed by applying an
iteration of the loop body

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 10 / 12



Generating the MGI

→ MGI can be defined as the inductive closure of the relation which
contains the loop initialization and which is closed by applying an
iteration of the loop body

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 10 / 12



MGIs in practice

this works with loops in sequence or even nested loops

one can specify the frame of the MGI, i.e. the variables that it should
track

→ tracking less variables means the MGI is not so general anymore, but
applies to more loops

MGIs allow sharing proofs between “similar” loops

→ if the MGI of some loop L is an invariant of some loop L′, all
invariants of L are invariants of L′

MGI generation need not be trusted

we use a similar trick to delay termination proofs for recursive
predicates or internal loops

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 11 / 12



MGIs in practice

this works with loops in sequence or even nested loops

one can specify the frame of the MGI, i.e. the variables that it should
track

→ tracking less variables means the MGI is not so general anymore, but
applies to more loops

MGIs allow sharing proofs between “similar” loops

→ if the MGI of some loop L is an invariant of some loop L′, all
invariants of L are invariants of L′

MGI generation need not be trusted

we use a similar trick to delay termination proofs for recursive
predicates or internal loops

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 11 / 12



MGIs in practice

this works with loops in sequence or even nested loops

one can specify the frame of the MGI, i.e. the variables that it should
track

→ tracking less variables means the MGI is not so general anymore, but
applies to more loops

MGIs allow sharing proofs between “similar” loops

→ if the MGI of some loop L is an invariant of some loop L′, all
invariants of L are invariants of L′

MGI generation need not be trusted

we use a similar trick to delay termination proofs for recursive
predicates or internal loops

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 11 / 12



MGIs in practice

this works with loops in sequence or even nested loops

one can specify the frame of the MGI, i.e. the variables that it should
track

→ tracking less variables means the MGI is not so general anymore, but
applies to more loops

MGIs allow sharing proofs between “similar” loops

→ if the MGI of some loop L is an invariant of some loop L′, all
invariants of L are invariants of L′

MGI generation need not be trusted

we use a similar trick to delay termination proofs for recursive
predicates or internal loops

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 11 / 12



MGIs in practice

this works with loops in sequence or even nested loops

one can specify the frame of the MGI, i.e. the variables that it should
track

→ tracking less variables means the MGI is not so general anymore, but
applies to more loops

MGIs allow sharing proofs between “similar” loops

→ if the MGI of some loop L is an invariant of some loop L′, all
invariants of L are invariants of L′

MGI generation need not be trusted

we use a similar trick to delay termination proofs for recursive
predicates or internal loops

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 11 / 12



Conclusion

good tooling is key to large verification project like ProvenCore

ProvenTools is designed to meet our ends and make the project
manageable

we value separation of code and specs

→ original way of dealing with loop reasoning

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 12 / 12



Conclusion

good tooling is key to large verification project like ProvenCore

ProvenTools is designed to meet our ends and make the project
manageable

we value separation of code and specs

→ original way of dealing with loop reasoning

Stéphane Lescuyer (Prove & Run) ProvenCore Entropy 2019, 16/06/2019 12 / 12


