Proving the security of interrupt

handli

ng against interrupt-based

side-ch

(Joint work with:

annel attacks: a case study

Frank Piessens

Entropy 2019 Workshop

Matteo Busi, Job Noorman, Jo Van Bulck, Letterio Galletta,
Pierpaolo Degano, Jan Tobias Mihlberg)

Overview

e Introduction: hardware isolation mechanisms and micro-architectural
attacks

* Enclaved execution: Sancus

* Extending Sancus with interrupts
* Formalization and security proof
* Implementation

* Conclusions

Hardware isolation mechanisms

Process 1 Process 2 Process 3

Operating System

Hardware

Protecting the kernel: privilege levels

Process 1 Process 2 Process 3

OS is protected
from applications

o Operating System
by privilege level

Hardware

Protecting processes: virtual memory

Processes are protected from each other through memory isolation

Process 1 Process 2 Process 3

OS is protected

from .appllcatlons Operating System
by privilege level

Hardware

Protecting critical software: enclaves

Processes are protected from each other through memory isolation

Enclaves are protected by memory isolation
m enforced by the hardware only
Process 1 Process 2 Process 3 e
OS is protected

from applications
by privilege level

Operatmg System

Hardware

Micro-architectural attacks ‘ﬁ‘f @I

* Over the past two years, all these isolation mechanisms have been
broken dramatically:
 Meltdown breaks user/kernel isolation

» Spectre breaks several isolation including process boundaries and software
defined boundaries

 Foreshadow breaks SGX enclave isolation

* And older but less impactful micro-architectural attacks have been
known for over a decade

References:
Paul Kocher et al. Spectre Attacks: Exploiting Speculative Execution, IEEE S&P 2019
Moritz Lipp et al. Meltdown: Reading Kernel Memory from User Space, USENIX Security Symposium 2018
Jo Van Bulck et al. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution,
USENIX Security Symposium 2018

Objective of our work

Study one specific attack mechanism
* More specifically, interrupt-based attacks

against one specific isolation mechanism
* More specifically, enclaves on small microprocessors

very rigorously
* More specifically, fully formal security objectives and proofs

Overview

e Introduction: hardware isolation mechanisms and micro-architectural
attacks

* Enclaved execution: Sancus

* Extending Sancus with interrupts
* Formalization and security proof
* Implementation

* Conclusions

Enclaved execution

* Security mechanism that enables secure remote computation
* Anisolation mechanism that relies only on the hardware
 Remote attestation to provide assurance on proper initialization
» Support for secure communication

* Implementations exist for small and large processors
e Cloud-level processors: Intel Software Guard Extensions (Intel SGX)
* |oT level processors: Sancus, Trustlite, Soteria, ...

* For this talk we focus on just the isolation mechanism

Sancus isolation

* Instructions to create protected modules or enclaves
e Contiguous memory range with list of entry points

* PC-based memory access control
* PC within enclave: full access to enclave memory
* PC outside enclave: only jumping to entry point is allowed

* Key property: encapsulation

* By keeping code and data of a module within one enclave, the code
of the module has exclusive access to the data of the module

Our model of Sancus

* A simplified TI MSP430 processor
* Standard instruction set + HLT/IN/OUT
* 64KB of byte addressable memory
e Supporting a single enclave

* A single I/O device
* Can model a cycle-accurate timer

e Can be an arbitrary deterministic I/O
automaton

* PC-based memory access control

i

Entry Point Prot. code Prot. Data Other

Entry Point/Prot. code

f r-X r-x rw- —x
Other

—X — — I'wx

Instr. ¢ Meaning

RETI Returns from interrupt.

NOP Mo-operation.

HLT Halt.

NOT r r +— —r. (Emulated in MSP430)

INT Reads word from the device and puts it In r.
OuT r Writes word in register r to the device.

AND rq o ro +— 11 & 1o

JMP &x Sets pe to the value 1n r.

JZ &r Sets pec to the value in r if bit 0 in sr 15 set.
MOV ry ro To +— Ijy.

MOV @ry re
Mov ry G[rg:l
MOV #w ro
ADD ry rs
SUB ry o
CMP ry T2

Loads in ro the word starting in location pointed by ry.
Stores the value of ry starting at location pointed by rs.
Ty +— W

Yo «+— X1 + TYo.

Yo +— ¥1 — TYa.

fero bit in sr set if ro — ry 15 Zero.

Security definitions

e Attacker model: attacker controls the entire context of an enclave
* All of the unprotected memory
* The connected device

* Isolation properties are formalized by means of contextual
equivalence

* Our security objective is to “not weaken isolation on extension of the
processor”

* We formalize this as “preservation of contextual equivalence”

Example

e Two instances of this enclave
differing in the value at
pwd_adrs:

* Are contextually equivalent if the
attacker does not have a timer
device

* Are not contextually equivalent
otherwise

e Sancus is vulnerable to end-to-
end timing attacks

int* store_adrs;
int* pwd adrs;

void entry(int pw /* rl5 */, int v /* rl4d */)

if (pw == *pwd _adrs) *store_adrs = v;
enclave_entry:
-‘l'r T r - | -] -'If'_ oy - (=) 'c." 2 i s | (= 3] .of
/+* Load addresses for comparison *
MOV #store_adrs, ri0 ; 2 cycles
MOV #access_ok, rill ; 2 cycles
MOV #endif, - ; 2 cycles
MOV #pwd_adrs, rl3 ; 2 cycles

CMP ri13, rlb
JZ &rll
~Yala [l =] Fo21 7«
dccess_Iadailldld

/
JMP &rl’2

access_ok:

MOV rild,
endif:

/% Clear

SUEB rl53,

- 7 7 = - : 4=
enclave _exit:

-1 2
ris

/* Compare user
MOV @r13, rl:

/+ Password fail:

/* Password ok:

0(rl0)

Secret

vs. enclav

SCOore user

enclave pa

-
r

return #y,

e password */
Z cycles

ssword =*/
1 cycle

Closing the timing leak

enclave_entry:
/* Load addresses for comp:é

e Balancing out execution time of MOV #store_adrs, rl0

the two if-branches closes the MOV #access ok, rll
MOV #endif, rlZ2

t|m|ng |eak MOV #pwd_adrs, rl3 ;

/* Compare user vs. enclave

* Now, two instances of the MOV @ri3, ri3

|—u

U

¥
o,

e
I"R':[.
1 0}
|-
(T
n

™y
bt
)
| T
(T
n

e
Ba Bbo Bo Do
0y O 0O O3 |-_|
RN

]

|-

(D

oy

T
)
(o
n

3
T

rd

U

o U b
"I'
CJ

"y
b
000w on

T
} 0 W
I
M
iy

. . CMP rl13, rlb ; 1 cycle
enclave with different values at J7 erll : 2 cycles

= 1
access_fail:

address de—adr‘S are h /* Password fail: constant time return

contextually equivalent NOP ; 1 cycle
NOP ; 1 cycle
JMP &rlZ2 ; £ cycles
access_ok:
/* Password ok: store user val #*/
MOV rlid4, O0(ri0) ; 4 cycles
endif:
/* Clear secret enclave password */
SUB rls3, rl3 ; 1 cycle
enclave_exit:

Overview

e Introduction: hardware isolation mechanisms and micro-architectural
attacks

* Enclaved execution: Sancus

* Extending Sancus with interrupts
* Formalization and security proof
* Implementation

* Conclusions

The extension: interruptible enclaves

* In Sancus, interrupts are disabled during the execution of an enclave

* This makes it impossible to protect against denial-of-service by a
module

e Several authors have proposed secure ways to interrupt enclaves

* Ruan De Clercq, Dries Schellekens, Frank Piessens, Ingrid
Verbauwhede, Secure Interrupts on Low-End Microcontrollers, ASAP 2014

 Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay Varadharajan,
TrustLite: a security architecture for tiny embedded devices, EuroSys 2014

But all these proposals are vulnerable to side-
channel attacks

e Full discussion of the main attack:

* Jo Van Bulck, Frank Piessens, Raoul Strackx, Nemesis: Studying Microarchitectural
Timing Leaks in Rudimentary CPU Interrupt Logic, ACM CCS 2018

* Nemesis performs measurements on the micro-architectural state by

measuring interrupt latency

* On small embedded platforms, this can leak information on the instruction that was

interrupted, and hence on control flow
* Sancus, Trustlite, ...

e On large processors, this is an instruction-granular measurement of the CPU's micro-
architectural state, where the instruction opcode is only one of many aspects that
influence the latency

* See the paper for details, including an attack against Intel SGX

The rudimentary CPU Interrupt logic ...

[Fel:ch} { Decode} ‘{ Exe::ute

%PC++} = Jump? > " IRQ?
yes \\\\\T///// yes

(— Ir L (ecure ogIC
LPC = IVT]| q]J LS IRQ log }

4

if secret {

..and how it leaks information |, ™ "

else {
NOP; NOP // 2 x 1 cycle

}

CLK _} 1 1 1 }
CMD 7% NOP)\ IRQlogic X ISR

RQ \

CMD 7 ADD X IRQlogic) ISR

RQ / \

See the Nemesis paper for more information

* Case studies showing how to use this attack on Sancus to
* Extract a password from a bootstrap loader
e Extract a PIN from a secure keypad

* An extension of the attack to larger processors:

* Where each interrupt latency measurement is an instruction-granular
measurement of the micro-architectural state

* A case study attacking privacy-sensitive data analytics in SGX

Example

enclave_entry:

/#+ Load addresses for comparison #*/
¢ BalanCEd enC|ave MOV #store_adrs, rl10 ; £ cycles
implementation becomes MOV #access_ok, rll ;2 cycles
. MOV #endif, rlZ2 ; £ cycles
VUlnerable aga|n MOV #pwd_adrs, rl3 ; 2 cycles

) /* Compare user vs. enclave password */
* Fail-branch: 1,1,2 MOV @ri3, ril3 ; 2 cycles
CMP rl13, rlb ; 1 cycle
. - [}
Ok-branch: 4 Jz &rll ; £ cycles
access_fail:

* Hence: adding interrupts

1l: constant time return #*/

k-

/* Password fa

weakens isolation properties NOP ; 1 cycle
NOP ; 1 cycle
JMP &rlZ2 ; £ cycles

access_ok:
/* Password ok: store user val #/
MOV rl14, 0(ri0) ; 4 cycles
endif:
ret enclave password */

/* Clear se
r ; 1 cycle

SUB rl3, 13
enclave_exit:

I
£

The attack is trickier than it seems

* Just padding interrupt handling time is not enough

* Three “measurements” to keep in mind:
* Interrupt latency
* Resume-to-end time
* Interrupt counting

Nemesis-resistant Sancus

* Designing the “Secure IRQ logic” such that it is secure against
Nemesis attacks:

* Cycle accurate interrupt delivery
* Pre- and post-padding such that:
* Interrupt latency is constant (T)
¢ Resume-to-end-time does not change on interrupt

t,

) T .,
“ > T

At, A, At
777 |

)

Interrupt service [] :enclave instruction

routine runs here 2/ - padding

—_—
»

P2

Overview

e Introduction: hardware isolation mechanisms and micro-architectural
attacks

* Enclaved execution: Sancus

* Extending Sancus with interrupts
* Formalization and security proof
* Implementation

* Conclusions

Formalizing the security objective

* Informally:
* the interrupts extension does not introduce new information leaks

* We formalize this as a full abstraction property

* What “leaks from a module” is defined by means of contextual equivalence

* Modules M, and M, are contextually equivalent (M, = M,) iff:
« VC:CIM] !l & C[M,] !

* M, = M, means:
* Difference between them does not leak C C
* Full abstraction is defined as the preservation

(and reflection) of contextual equivalence
before and after the extension

High-level overview of the proof

* Provide operational semantics for both versions of Sancus
» Reflection of contextual equivalence is trivial

* Preservation is proved by using a trace-semantics
e Traces: A:=e|jmpIn?(R) | jmpOut!(At;R).
 Structure of the proof:

M = My
(21)
(i)
T

M My < (0) My = M

Step (I) If Mar = My then My ~% Moy

i SUfflClent tO prOVEZ eru ; Mﬁ_,}u — (VCC[M}L{] ._.L — C[M_.-\.jf] .L).

* Intuition behind the proof:
* Consider the executions of C[M| and C[M /]
* They proceed in lockstep while in unprotected mode

* On entry of protected mode:

e By trace-equivalence they will either return the same result after the same time, or will
both halt

* The interrupts that will go off during protected execution are exactly the same

Step (”) If My ~H M then My = M.

* Intuition behind the proof:
* Find a trace B of M that M’ does not have
* Find a trace B, of M" with a maximal common prefix
* The first difference must be in a halt or jump-out action

* Construct a context that generates B._.. and turns the first difference into a
difference in termination

e This construction relies on the fact that we can use an arbitrarily complex device to help
us construct calls to the protected module

min

Some surprising observations from doing the
oroof

» Several other “attacks” break contextual equivalence:

* “Concurrency-like” issues:
 If an enclave can read unprotected memory, interrupts break contextual equivalence
* If an enclave can be “re-entered” on interrupt, this breaks contextual equivalence

* Saving execution state:

e Storing saved execution state of the module on an in-enclave stack breaks contextual
equivalence

* Manipulating interrupt enable bits within the enclave breaks contextual
equivalence

* Handling corner cases is tricky:
 What if a new interrupt arrives while still padding for the previous one?

Overview

e Introduction: hardware isolation mechanisms and micro-architectural
attacks

* Enclaved execution: Sancus

* Extending Sancus with interrupts
* Formalization and security proof
* Implementation

* Conclusions

Implementation

* We have implemented our secure design as an extension of the
current Sancus processor

e Performance overhead is predictable and small

* Area overhead is significant, mainly because of the need to back up registers
on interrupt
* Needed anyway to support other secure interrupt designs
e Can be reduced by saving registers in memory

Overview

e Introduction: hardware isolation mechanisms and micro-architectural
attacks

* Enclaved execution: Sancus
* Extending Sancus with interrupts
* Formalization and security proof
* Implementation

m) - Conclusions

Conclusions

* We propose an approach to give high-assurance arguments that an
(architectural or micro-architectural) extension of a base system does
not introduce new software exploitable side-channel leaks

* For small deterministic systems, this appears to be a very strong guarantee
* Scaling it to bigger or non-deterministic systems is a challenge for future work

* We have applied it to a significant case-study:
» extending an embedded processor supporting enclaves with interrupts

* For bigger systems, we need to find ways to “factor” the problem in
smaller sub problems

