
Proving the security of interrupt
handling against interrupt-based
side-channel attacks: a case study

Frank Piessens

Entropy 2019 Workshop

(Joint work with: Matteo Busi, Job Noorman, Jo Van Bulck, Letterio Galletta,
Pierpaolo Degano, Jan Tobias Mühlberg)

Overview

• Introduction: hardware isolation mechanisms and micro-architectural
attacks

• Enclaved execution: Sancus

• Extending Sancus with interrupts

• Formalization and security proof

• Implementation

• Conclusions

Hardware isolation mechanisms

3

Hardware

Operating System

Process 1 Process 2 Process 3 …

Protecting the kernel: privilege levels

4

Hardware

Operating System

Process 1 Process 2 Process 3 …

OS is protected
from applications
by privilege level

Protecting processes: virtual memory

5

Hardware

Operating System

Process 1 Process 2 Process 3 …

OS is protected
from applications
by privilege level

Processes are protected from each other through memory isolation

Protecting critical software: enclaves

6

Hardware

Operating System

Process 1 Process 2 Process 3 …

OS is protected
from applications
by privilege level

Processes are protected from each other through memory isolation

Enclave

Enclaves are protected by memory isolation
enforced by the hardware only

Micro-architectural attacks

• Over the past two years, all these isolation mechanisms have been
broken dramatically:
• Meltdown breaks user/kernel isolation

• Spectre breaks several isolation including process boundaries and software
defined boundaries

• Foreshadow breaks SGX enclave isolation

• And older but less impactful micro-architectural attacks have been
known for over a decade

7

References:
Paul Kocher et al. Spectre Attacks: Exploiting Speculative Execution, IEEE S&P 2019
Moritz Lipp et al. Meltdown: Reading Kernel Memory from User Space, USENIX Security Symposium 2018
Jo Van Bulck et al. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution,

USENIX Security Symposium 2018

Objective of our work

Study one specific attack mechanism
• More specifically, interrupt-based attacks

against one specific isolation mechanism
• More specifically, enclaves on small microprocessors

very rigorously
• More specifically, fully formal security objectives and proofs

Overview

• Introduction: hardware isolation mechanisms and micro-architectural
attacks

• Enclaved execution: Sancus

• Extending Sancus with interrupts

• Formalization and security proof

• Implementation

• Conclusions

Enclaved execution

• Security mechanism that enables secure remote computation
• An isolation mechanism that relies only on the hardware

• Remote attestation to provide assurance on proper initialization

• Support for secure communication

• Implementations exist for small and large processors
• Cloud-level processors: Intel Software Guard Extensions (Intel SGX)

• IoT level processors: Sancus, Trustlite, Soteria, …

• For this talk we focus on just the isolation mechanism

Sancus isolation

• Instructions to create protected modules or enclaves
• Contiguous memory range with list of entry points

• PC-based memory access control
• PC within enclave: full access to enclave memory

• PC outside enclave: only jumping to entry point is allowed

• Key property: encapsulation
• By keeping code and data of a module within one enclave, the code

of the module has exclusive access to the data of the module

11

Our model of Sancus

• A simplified TI MSP430 processor
• Standard instruction set + HLT/IN/OUT

• 64KB of byte addressable memory

• Supporting a single enclave

• A single I/O device
• Can model a cycle-accurate timer

• Can be an arbitrary deterministic I/O
automaton

• PC-based memory access control

Security definitions

• Attacker model: attacker controls the entire context of an enclave
• All of the unprotected memory

• The connected device

• Isolation properties are formalized by means of contextual
equivalence
• Our security objective is to “not weaken isolation on extension of the

processor”

• We formalize this as “preservation of contextual equivalence”

Example

• Two instances of this enclave
differing in the value at
pwd_adrs:
• Are contextually equivalent if the

attacker does not have a timer
device

• Are not contextually equivalent
otherwise

• Sancus is vulnerable to end-to-
end timing attacks

int* store_adrs;
int* pwd_adrs;

void entry(int pw /* r15 */, int v /* r14 */) {
if (pw == *pwd_adrs) *store_adrs = v;
}

Closing the timing leak

• Balancing out execution time of
the two if-branches closes the
timing leak

• Now, two instances of the
enclave with different values at
address pwd_adrs are
contextually equivalent

Overview

• Introduction: hardware isolation mechanisms and micro-architectural
attacks

• Enclaved execution: Sancus

• Extending Sancus with interrupts

• Formalization and security proof

• Implementation

• Conclusions

The extension: interruptible enclaves

• In Sancus, interrupts are disabled during the execution of an enclave

• This makes it impossible to protect against denial-of-service by a
module

• Several authors have proposed secure ways to interrupt enclaves
• Ruan De Clercq, Dries Schellekens, Frank Piessens, Ingrid

Verbauwhede, Secure Interrupts on Low-End Microcontrollers, ASAP 2014

• Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay Varadharajan,
TrustLite: a security architecture for tiny embedded devices, EuroSys 2014

But all these proposals are vulnerable to side-
channel attacks
• Full discussion of the main attack:

• Jo Van Bulck, Frank Piessens, Raoul Strackx, Nemesis: Studying Microarchitectural
Timing Leaks in Rudimentary CPU Interrupt Logic, ACM CCS 2018

• Nemesis performs measurements on the micro-architectural state by
measuring interrupt latency
• On small embedded platforms, this can leak information on the instruction that was

interrupted, and hence on control flow
• Sancus, Trustlite, …

• On large processors, this is an instruction-granular measurement of the CPU's micro-
architectural state, where the instruction opcode is only one of many aspects that
influence the latency
• See the paper for details, including an attack against Intel SGX

18

The rudimentary CPU Interrupt logic …

19

… and how it leaks information

20

…

if secret {

ADD @R5+,R6 // 2 cycles

}

else {

NOP; NOP // 2 x 1 cycle

}

…

See the Nemesis paper for more information

• Case studies showing how to use this attack on Sancus to
• Extract a password from a bootstrap loader

• Extract a PIN from a secure keypad

• An extension of the attack to larger processors:
• Where each interrupt latency measurement is an instruction-granular

measurement of the micro-architectural state

• A case study attacking privacy-sensitive data analytics in SGX

21

Example

• Balanced enclave
implementation becomes
vulnerable again
• Fail-branch: 1,1,2

• Ok-branch: 4

• Hence: adding interrupts
weakens isolation properties

The attack is trickier than it seems

• Just padding interrupt handling time is not enough

• Three “measurements” to keep in mind:
• Interrupt latency

• Resume-to-end time

• Interrupt counting

Nemesis-resistant Sancus

• Designing the “Secure IRQ logic” such that it is secure against
Nemesis attacks:
• Cycle accurate interrupt delivery

• Pre- and post-padding such that:
• Interrupt latency is constant (T)

• Resume-to-end-time does not change on interrupt

I I’

Interrupt service
routine runs here

Legend:

: enclave instruction

: padding

T
T

Overview

• Introduction: hardware isolation mechanisms and micro-architectural
attacks

• Enclaved execution: Sancus

• Extending Sancus with interrupts

• Formalization and security proof

• Implementation

• Conclusions

Formalizing the security objective

• Informally:
• the interrupts extension does not introduce new information leaks

• We formalize this as a full abstraction property
• What “leaks from a module” is defined by means of contextual equivalence

• Modules 𝑀1 and 𝑀2 are contextually equivalent (𝑀1 ≈ 𝑀2) iff:

• ∀ 𝐶: 𝐶 𝑀1 ↓ ֞ 𝐶 𝑀2 ↓

• 𝑀1 ≈ 𝑀2 means:
• Difference between them does not leak

• Full abstraction is defined as the preservation
(and reflection) of contextual equivalence
before and after the extension

M1

C

M2

C

High-level overview of the proof

• Provide operational semantics for both versions of Sancus

• Reflection of contextual equivalence is trivial

• Preservation is proved by using a trace-semantics
• Traces:

• Structure of the proof:

Step (i)

• Sufficient to prove:

• Intuition behind the proof:
• Consider the executions of and

• They proceed in lockstep while in unprotected mode

• On entry of protected mode:
• By trace-equivalence they will either return the same result after the same time, or will

both halt

• The interrupts that will go off during protected execution are exactly the same

Step (ii):

• Intuition behind the proof:
• Find a trace β of M that M’ does not have

• Find a trace βmin of M’ with a maximal common prefix
• The first difference must be in a halt or jump-out action

• Construct a context that generates βmin and turns the first difference into a
difference in termination
• This construction relies on the fact that we can use an arbitrarily complex device to help

us construct calls to the protected module

Some surprising observations from doing the
proof
• Several other “attacks” break contextual equivalence:

• “Concurrency-like” issues:
• If an enclave can read unprotected memory, interrupts break contextual equivalence

• If an enclave can be “re-entered” on interrupt, this breaks contextual equivalence

• Saving execution state:
• Storing saved execution state of the module on an in-enclave stack breaks contextual

equivalence

• Manipulating interrupt enable bits within the enclave breaks contextual
equivalence

• Handling corner cases is tricky:
• What if a new interrupt arrives while still padding for the previous one?

Overview

• Introduction: hardware isolation mechanisms and micro-architectural
attacks

• Enclaved execution: Sancus

• Extending Sancus with interrupts

• Formalization and security proof

• Implementation

• Conclusions

Implementation

• We have implemented our secure design as an extension of the
current Sancus processor
• Performance overhead is predictable and small

• Area overhead is significant, mainly because of the need to back up registers
on interrupt
• Needed anyway to support other secure interrupt designs

• Can be reduced by saving registers in memory

Overview

• Introduction: hardware isolation mechanisms and micro-architectural
attacks

• Enclaved execution: Sancus

• Extending Sancus with interrupts

• Formalization and security proof

• Implementation

• Conclusions

Conclusions

• We propose an approach to give high-assurance arguments that an
(architectural or micro-architectural) extension of a base system does
not introduce new software exploitable side-channel leaks
• For small deterministic systems, this appears to be a very strong guarantee

• Scaling it to bigger or non-deterministic systems is a challenge for future work

• We have applied it to a significant case-study:
• extending an embedded processor supporting enclaves with interrupts

• For bigger systems, we need to find ways to “factor” the problem in
smaller sub problems

